跳至內容

菸酰胺單核苷酸

本頁使用了標題或全文手工轉換
維基百科,自由的百科全書
菸酰胺單核苷酸
IUPAC名
3-Carbamoyl-1-[5-O-(hydroxyphosphinato)-β-D-ribofuranosyl]pyridinium
別名
  • Nicotinamide ribonucleoside 5'-phosphate
  • Nicotinamide D-ribonucleotide
  • β-Nicotinamide ribose monophosphate
  • Nicotinamide nucleotide
識別
CAS號 1094-61-7  checkY
PubChem 16219737
ChemSpider 13553
SMILES
 
  • c1cc(c[n+](c1)[C@H]2[C@@H]([C@@H]([C@H](O2)COP(=O)(O)[O-])O)O)C(=O)N
Beilstein 3570187
EINECS 214-136-5
ChEBI 16171
KEGG C00455
性質
化學式 C11H15N2O8P
摩爾質量 334.22 g·mol−1
若非註明,所有數據均出自標準狀態(25 ℃,100 kPa)下。

菸酰胺單核苷酸(英語:Nicotinamide Mononucleotide,縮寫「NMN」或「β-NMN」)是一種由核糖菸酰胺衍生的核苷酸[1]菸酰胺核糖苷一樣,NMN是菸酸的衍生物,人類也有利用NMN生成菸酰胺腺嘌呤二核苷酸(NADH)的酶[1]。在小鼠中,NMN在10分鐘內通過小腸進入細胞,通過Slc12a8 NMN轉運體轉化為NAD+。[2]

因為NADH是線粒體內過程、去乙酰酶和PARP的輔因子,NMN已經在動物模型中作為潛在的神經保護和抗衰老劑而被研究[3][4]。膳食補充劑公司積極推銷NMN產品,宣傳這些好處。[5]日本東京新宿慶應義塾大學醫學院最近的一項人體研究表明,不超過500毫克的NMN劑量對男性是安全的。[6]

菸酰胺核苷(NR)激酶對NR和NMN的外源性利用至關重要。[7][8] 當外源性給藥時,NMN必須轉化為NR才能進入細胞並被重新磷酸化回NMN。NR和NMN都易受CD38環ADP核糖水解酶的胞外降解[8],而CD38酶可被CD38- in -78c.等化合物抑制[9]

參考文獻

  1. ^ 1.0 1.1 Bogan KL, Brenner C. Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. Annual Review of Nutrition. 2008, 28: 115–30. PMID 18429699. doi:10.1146/annurev.nutr.28.061807.155443. 
  2. ^ Slc12a8 is a nicotinamide mononucleotide transporter. Nature. January 2019 [2021-01-05]. (原始內容存檔於2022-01-07). 
  3. ^ Brazill JM, Li C, Zhu Y, Zhai RG. + synthase… It's a chaperone… It's a neuroprotector. Current Opinion in Genetics & Development. June 2017, 44: 156–162. PMC 5515290可免費查閱. PMID 28445802. doi:10.1016/j.gde.2017.03.014. 
  4. ^ Long-Term Administration of Nicotinamide Mononucleotide Mitigates Age-Associated Physiological Decline in Mice. Cell Metabolism. 13 December 2016 [2021-01-05]. (原始內容存檔於2020-09-09). 
  5. ^ Stipp D. Beyond Resveratrol: The Anti-Aging NAD Fad. Scientific American Blog Network. March 11, 2015 [2021-01-05]. (原始內容存檔於2021-01-26) (英語). 
  6. ^ Irie, Junichiro; Inagaki, Emi; Fujita, Masataka; Nakaya, Hideaki; Mitsuishi, Masanori; Yamaguchi, Shintaro; Yamashita, Kazuya; Shigaki, Shuhei; Ono, Takashi; Yukioka, Hideo; Okano, Hideyuki. Effect of oral administration of nicotinamide mononucleotide on clinical parameters and nicotinamide metabolite levels in healthy Japanese men. Endocrine Journal. 2020, 67 (2): 153–160 [2021-01-05]. ISSN 0918-8959. doi:10.1507/endocrj.EJ19-0313. (原始內容存檔於2021-04-06) (英語). 
  7. ^ Fletcher RS, Lavery GG. The emergence of the nicotinamide riboside kinases in the regulation of NAD+ metabolism. Journal of Molecular Endocrinology. October 2018, 61 (3): R107–R121. PMC 6145238可免費查閱. PMID 30307159. doi:10.1530/JME-18-0085. 
  8. ^ 8.0 8.1 Cambronne XA, Kraus WL. + Synthesis and Functions in Mammalian Cells. Trends in Biochemical Sciences. October 2020, 45 (10): 858–873 [2021-01-05]. PMC 7502477可免費查閱. PMID 32595066. doi:10.1016/j.tibs.2020.05.010. (原始內容存檔於2020-10-20). 
  9. ^ Tarragó MG, Chini CC, Kanamori KS, Warner GM, Caride A, de Oliveira GC, et al. + Decline. Cell Metabolism. May 2018, 27 (5): 1081–1095.e10. PMC 5935140可免費查閱. PMID 29719225. doi:10.1016/j.cmet.2018.03.016.