跳至內容

分佈式信源編碼

維基百科,自由的百科全書

分佈式信源編碼(Distributed Source Coding,DSC)是對信息互相關聯但不互相通信的信源的一種信息壓縮方式[1]. 它和其他信源編碼不同的是,在這裏使用的是信道碼。

分佈式信源編碼的主要應用領域有傳感器網絡(sensor network)和圖像,視頻,多媒體壓縮[2]). 其最主要的特點有兩條,第一,編碼計算非常簡單,解碼相對比較複雜;第二,互不通信的信息相關的信源壓縮可以達到有互相通信的壓縮效率。

理論值

做為信息論的一個分支,早在1973年David Slepian和Jack K. Wolf就利用信息熵提出針對於兩個信息互相關聯信源無損壓縮的理論極限,稱之為斯理篇-伍夫界限(Slepian-Wolf bound)[3]. 他們證明了兩個互不通信的信息相關的信源壓縮可以達到有互相通信的壓縮效率. 這個壓縮界限後來被Thomas Cover擴展到了多個相關信源的情況.[4].

於1976年, A. Wyner和J. Ziv在考慮高斯信源的有損壓縮時得到了類似的結果[5]. Wyner-Ziv界限在解碼誤碼率為零時等於Slepian-Wolf界限。

歷史

2003年, Pradhan和Ramachandran把校驗子(syndrome)運用到了分佈式信源網絡並稱之為DIstributed Source Coding Using Syndromes (DISCUS)[6].他們將兩個二進制的信源分成定長的組,對於一個信源用定長碼壓縮得到這些組的校驗子,而另外一個信源則完全不壓縮,作為邊信息。這種碼率不均衡的分佈式信源編碼壓縮方式成為不對稱壓縮(asymmetric DSC)。顯而易見的是,反覆使用前一個信源的信息作為邊信息,這種不對稱的壓縮方式可以輕易的擴展到多個信源. 有些分佈式信源編碼系統使用的奇偶校驗子(parity-check bits)。

在先今的分佈式信源編碼中,常常用虛擬信道作為兩個相關信源的關聯性的模型,二元對稱信道Binary symmetric channel多用於描述虛擬信道的特性[7][8].

在對兩個相關聯的信源的相關性研究中,通常用到兩種模型:確定式和概率式。基於這兩種模型,分佈式信源編碼被擴展到跟普遍性的方式:兩個信源都被壓縮,不存在所謂的邊信息[9][10][11]. 這種更普遍的方式被稱為非不對稱壓縮(Non-asymmetric DSC)。

基於一種確定式的虛擬信道模型,X.曹和M. Kuijper將非不對稱壓縮的分佈式信源編碼擴展到任何數量的相關信源,每個信源可以更靈活的在Slepian-Wolf界限內達到任意壓縮碼率,而所有信源壓縮後的總碼率和不對稱式多信源的總碼率相同[12] .

Slepian-Wolf界限

,

,

虛擬信道

確定式模型

概率式模型

不對稱壓縮的分佈式信源編碼

非不對稱壓縮的分佈式信源編碼

對於多於兩個相關信源的非不對稱壓縮的分佈式信源編碼

參考文獻

  1. ^ "Distributed source coding for sensor networks" by Zixiang Xiong Liveris, A.D. Cheng, S.
  2. ^ "Distributed video coding in wireless sensor networks" by Puri, R. Majumdar, A. Ishwar, P. Ramchandran, K.
  3. ^ "Noiseless coding of correlated information sources" by D. Slepian and J. Wolf. [2009-07-22]. (原始內容存檔於2014-11-13). 
  4. ^ "A proof of the data compression theorem of Slepian and Wolf for ergodic sources" by T. Cover. [2009-07-22]. (原始內容存檔於2014-11-19). 
  5. ^ "The rate-distortion function for source coding with side information at the decoder" by Wyner, A. Ziv, J.
  6. ^ "Distributed source coding using syndromes (DISCUS): design and construction" by Pradhan, S.S. and Ramchandran, K.. [2009-07-22]. (原始內容存檔於2010-08-23). 
  7. ^ "Distributed code constructions for the entire Slepian-Wolf rate region for arbitrarily correlated sources" by Schonberg, D. Ramchandran, K. Pradhan, S.S.
  8. ^ "Generalized coset codes for distributed binning" by Pradhan, S.S. Ramchandran, K.
  9. ^ "On code design for the Slepian-Wolf problem and lossless multiterminal networks" by Stankovic, V. Liveris, A.D. Zixiang Xiong Georghiades, C.N.
  10. ^ "A general and optimal framework to achieve the entire rate region for Slepian-Wolf coding" by P. Tan and J. Li
  11. ^ "Distributed source coding using short to moderate length rate-compatible LDPC codes: the entire Slepian-Wolf rate region" by Sartipi, M. Fekri, F.
  12. ^ "A distributed source coding framework for multiple sources" by Xiaomin Cao and Kuijper, M.