免疫治療
免疫治療 | |
---|---|
MeSH | D007167 |
OPS-301 | 8-03 |
免疫治療(英語:Immunotherapy),是指通過誘導、增強或抑制免疫反應的疾病治療方法[1]。其中旨在引起或增強免疫反應的免疫療法,稱為激活免疫療法(activation immunotherapies),而減少或抑制免疫反應則是抑制免疫療法(suppression immunotherapies)。
免疫療法往往比現有藥物的副作用少,包括減少對微生物疾病的抗藥性反應[2]。
基於細胞的免疫療法對一些癌症有效。免疫效應細胞如淋巴細胞、巨噬細胞、樹突狀細胞、自然殺手細胞(NK細胞),細胞毒性T淋巴細胞(CTL)等,通過針對腫瘤細胞表面的異常抗原,來共同幫助身體抵禦癌症。
粒細胞集落刺激因子(G-CSF)、干擾素、咪喹莫特與細菌細胞膜組分等療法,已經許可進入臨床治療。其他研究有白細胞介素-2、白細胞介素-7、白細胞介素-12、各種趨化因子、人工合成的CpG寡去氧核苷酸和葡聚糖等,這些均已進入臨床和臨床前研究。
免疫調節劑
免疫調節劑是一類用於免疫療法的調節劑,包括各種重組、合成和天然的製劑。
調節劑 | 例子 |
---|---|
白細胞介素 | IL-2、IL-7、IL-12 |
細胞因子 | 干擾素、粒細胞集落刺激因子 |
趨化因子 | CCL3、CCL26、CXCL7 |
其他 | CpG寡去氧核苷酸、葡聚糖、咪喹莫特 |
激活免疫療法
癌症
癌症免疫療法通過刺激免疫系統來摧毀腫瘤。實踐、研究和實驗中有一系列策略方法。隨機對照研究報告顯示,不同類型癌症的免疫治療中,患者的生存期和無病期都有顯著提高[3][4][5][6],與常規治療方法聯合更會增加20%-30%的療效。
以粒細胞集落刺激因子刺激從病人血液中提取的外周血幹細胞產生淋巴細胞,在體外與腫瘤抗原共培養後輸回病人體內,並輔以刺激性的細胞因子增強免疫效應[7],該細胞可以摧毀攜帶相同抗原的腫瘤細胞[8]。
卡介苗免疫治療已證明對淺表性膀胱癌患者有效[9],通過灌輸入膀胱減弱活性的細菌,成功預防高達三分之二的復發案例。
局部免疫療法是利用免疫增強霜(咪喹莫特)產生干擾素,促使患者的殺手T細胞摧毀疣[10]、光化性角化病、基底細胞癌、陰道上皮內瘤樣病變[11]、鱗狀細胞癌[9][12]、皮膚淋巴瘤[13]和淺表惡性黑色素瘤[14]。
注射免疫治療包括流行性腮腺炎、念珠菌、HPV疫苗[15][16]或髮癬菌抗原注射劑(以治療尖銳濕疣)。
樹突狀細胞刺激
醫學家可以通過刺激樹突狀細胞,激活對抗原的細胞毒性反應。樹突狀細胞是一種從患者體內獲取的抗原提呈細胞。它們可通過與抗原脈衝或與病毒載體轉染,使其顯現抗原。這些活性細胞在注入患者體內後,能夠標註出淋巴細胞的抗原(CD4+輔助性T細胞、細胞毒性T細胞和B細胞)。它隨後啟動細胞毒性抗腫瘤免疫反應,以對抗呈現出抗原的腫瘤細胞(適應性反應已經啟動)[18]。癌症疫苗Sipuleucel-T即採用該方法[19]。
T細胞過繼轉移
過繼細胞轉移體外通過培育自體T細胞以備回輸[20]。該T細胞可能已經靶向腫瘤細胞;或者通過轉基因技術引導而生。這些T細胞被稱之為腫瘤浸潤性淋巴細胞,他們與高濃度的白細胞介素-2、抗CD3和同種異體反應性細胞融合。隨後一併轉移到患者體內,隨着白細胞介素-2藥效而進一步提高其抗癌活性。
在注入前需要進行受體的淋巴細胞缺失,即消除調節性T細胞以及未修改的內源性淋巴細胞;後者會和轉移細胞產生細胞穩態因子競爭[20][21][22][23]。淋巴細胞缺失可以通過實現全身照射實現[24]。在許多案例中,轉移細胞增多會伴生外周血,在注射後6-12個月內,T細胞的CD8指標水平會高達75%+[25]。2012年,轉移性黑色素瘤的臨床試驗正在多處進行[26]。
免疫增強療法
自體免疫增強療法是利用患者的外周血來源自然殺手細胞、細胞毒性T淋巴細胞和其他免疫相關細胞,進行擴容後回輸[27]。該療法已被用於丙肝[28][29][30]、慢性疲勞綜合症[31][32]和人類疱疹病毒6型感染的試驗中[33]。
轉基因T細胞
轉基因T細胞是一類轉基因技術。通過提取患者體內感染逆轉錄病毒的細胞,其包含一份T細胞受體(TCR)基因,用於專門識別腫瘤抗原。病毒結合了受體T細胞的基因組,細胞因此擴大非特異性和/或刺激。然後將細胞回輸到患者體內,產生對腫瘤細胞的免疫反應[34]。該技術已在難治性IV期的轉移性黑色素瘤[20]和加速期皮膚癌的案例中試驗[35][36][37]。
免疫功能恢復
免疫療法的另一個潛在應用是恢復免疫功能缺陷患者的免疫系統。細胞因子、白細胞介素-7和白細胞介素-2已進行臨床試驗。
疫苗
抗微生物劑免疫治療,包括接種疫苗,涉及激活免疫系統以應對傳染性病原體。
抑制免疫療法
抑制免疫療法,是抑制自體免疫疾病中的異常免疫反應,或者降低正常免疫反應以阻止細胞或者器官移植中的排斥反應。
免疫抑制藥物
免疫抑制藥物可以幫助控制器官移植和自體免疫性疾病。免疫反應依賴於淋巴細胞增殖,基於此免疫抑制劑用於抑制細胞生長。糖皮質激素是一類特定的淋巴細胞活化的抑制劑,而免疫親和素抑制劑則針對於T淋巴細胞活化目標;免疫抗體針對免疫反應的階段程度;其他藥物調節免疫反應。
免疫耐受
人體機能不會天然地對自身組織發動免疫系統攻擊。免疫耐受療法尋求重建免疫系統,在自體免疫疾病或接受器官移植情況中,使身體停止錯誤地攻擊自己的器官[38]。並生成免疫力耐受或消除終身免疫抑制及伴生的副作用。它已經在器官移植、1型糖尿病或其他自體免疫性疾病中進行測試。
過敏
免疫療法可用於治療過敏。儘管過敏治療(如抗組胺藥或皮質類固醇)可以進行治療過敏症狀,免疫治療也可以降低靈敏度過敏原,減輕嚴重過敏反應。
免疫治療可以產生長期效果[39]。免疫治療在一些患者中部分有效、或者一類患者完全無效,但它提供了減少或停止患者過敏症狀的機會。
該療法適用於有極度過敏或無法避免具體過敏原的患者。免疫療法一般不用於食品或藥物過敏。這種療法的人對過敏性鼻炎或哮踹特別有用。在免疫治療中的第一劑,增加微小的過敏原或抗原量。隨着時間的推移增加劑量,患者逐漸消除過敏性。這項技術已用於嬰兒疫苗,預防花生過敏[40]。
驅蟲療法
豬鞭蟲(一類鞭蟲)和美洲鈎蟲已經用於免疫性疾病和過敏反應的測試。驅蟲治療已被視為一類緩解多發性硬化症[41]、克羅恩病[42][43][44]、過敏和哮喘的治療方法[45]。此類蠕蟲的免疫反應調節機制仍屬未知。醫學家推測它是重新極化的Th1/Th2免疫應答[46],或者樹突狀細胞功能的調節[47][48]。該類蠕蟲通過下調促炎性Th1細胞因子、白細胞介素12(IL-12)、γ-干擾素(IFN-γ)和腫瘤壞死因子(TNF-ά),促進生產調節Th2細胞因子(比如IL-10,IL-4,IL-5和IL-13)[46][49]。
此類蠕蟲的共同演化過程,產生了一些基因相關的白細胞介素表達和免疫性障礙(如克羅恩病,潰瘍性結腸炎和乳糜瀉)。
參見
參考
- ^ immunotherapies definition. Dictionary.com. [2009-06-02]. (原始內容存檔於2014-10-27).
- ^ Masihi KN. Fighting infection using immunomodulatory agents. Expert Opin Biol Ther. July 2001, 1 (4): 641–53. PMID 11727500. doi:10.1517/14712598.1.4.641.
- ^ Fujita K, Ikarashi H, Takakuwa K, Kodama S, Tokunaga A, Takahashi T, Tanaka K. Prolonged disease-free period in patients with advanced epithelial ovarian cancer after adoptive transfer of tumor-infiltrating lymphocytes. Clin. Cancer Res. May 1995, 1 (5): 501–7. PMID 9816009.
- ^ Kimura H, Yamaguchi Y. A phase III randomized study of interleukin-2 lymphokine-activated killer cell immunotherapy combined with chemotherapy or radiotherapy after curative or noncurative resection of primary lung carcinoma. Cancer. July 1997, 80 (1): 42–9. PMID 9210707. doi:10.1002/(SICI)1097-0142(19970701)80:1<42::AID-CNCR6>3.0.CO;2-H.
- ^ Takayama T, Sekine T, Makuuchi M, Yamasaki S, Kosuge T, Yamamoto J, Shimada K, Sakamoto M, Hirohashi S, Ohashi Y, Kakizoe T. Adoptive immunotherapy to lower postsurgical recurrence rates of hepatocellular carcinoma: a randomised trial. Lancet. September 2000, 356 (9232): 802–7. PMID 11022927. doi:10.1016/S0140-6736(00)02654-4.
- ^ Kono K, Takahashi A, Ichihara F, Amemiya H, Iizuka H, Fujii H, Sekikawa T, Matsumoto Y. Prognostic significance of adoptive immunotherapy with tumor-associated lymphocytes in patients with advanced gastric cancer: a randomized trial. Clin. Cancer Res. June 2002, 8 (6): 1767–71. PMID 12060615.
- ^ Li K, Li CK, Chuen CK, Tsang KS, Fok TF, James AE, Lee SM, Shing MM, Chik KW, Yuen PM. Preclinical ex vivo expansion of G-CSF-mobilized peripheral blood stem cells: effects of serum-free media, cytokine combinations and chemotherapy. Eur. J. Haematol. February 2005, 74 (2): 128–35. PMID 15654904. doi:10.1111/j.1600-0609.2004.00343.x.
- ^ 巨噬细胞对间充质干细胞成骨分化影响的研究进展. 中國脊柱脊髓雜誌. 2016-02-08 [2016-04-20]. (原始內容存檔於2021-12-11).
- ^ 9.0 9.1 Järvinen R, Kaasinen E, Sankila A, Rintala E. Long-term efficacy of maintenance bacillus Calmette-Guérin versus maintenance mitomycin C instillation therapy in frequently recurrent TaT1 tumours without carcinoma in situ: a subgroup analysis of the prospective, randomised FinnBladder I study with a 20-year follow-up. Eur. Urol. August 2009, 56 (2): 260–5. PMID 19395154. doi:10.1016/j.eururo.2009.04.009.
- ^ van Seters M, van Beurden M, ten Kate FJ, Beckmann I, Ewing PC, Eijkemans MJ, Kagie MJ, Meijer CJ, Aaronson NK, Kleinjan A, Heijmans-Antonissen C, Zijlstra FJ, Burger MP, Helmerhorst TJ. Treatment of vulvar intraepithelial neoplasia with topical imiquimod. N. Engl. J. Med. April 2008, 358 (14): 1465–73. PMID 18385498. doi:10.1056/NEJMoa072685.
- ^ Buck HW, Guth KJ. Treatment of vaginal intraepithelial neoplasia (primarily low grade) with imiquimod 5% cream. J Low Genit Tract Dis. October 2003, 7 (4): 290–3. PMID 17051086. doi:10.1097/00128360-200310000-00011.
- ^ Davidson HC, Leibowitz MS, Lopez-Albaitero A, Ferris RL. Immunotherapy for head and neck cancer. Oral Oncol. September 2009, 45 (9): 747–51. PMID 19442565. doi:10.1016/j.oraloncology.2009.02.009.
- ^ Dani T, Knobler R. Extracorporeal photoimmunotherapy-photopheresis. Front. Biosci. 2009, 14 (14): 4769–77. PMID 19273388. doi:10.2741/3566.
- ^ Eggermont AM, Schadendorf D. Melanoma and immunotherapy. Hematol. Oncol. Clin. North Am. June 2009, 23 (3): 547–64, ix–x. PMID 19464602. doi:10.1016/j.hoc.2009.03.009.
- ^ Chuang CM, Monie A, Wu A, Hung CF. Combination of apigenin treatment with therapeutic HPV DNA vaccination generates enhanced therapeutic anti tumor effects. J. Biomed. Sci. 2009, 16 (1): 49. PMC 2705346 . PMID 19473507. doi:10.1186/1423-0127-16-49.
- ^ Pawlita M, Gissmann L. [Recurrent respiratory papillomatosis: indication for HPV vaccination?]. Dtsch. Med. Wochenschr. April 2009,. 134 Suppl 2: S100–2. PMID 19353471. doi:10.1055/s-0029-1220219 (德語).
- ^ Kang N, Zhou J, Zhang T, Wang L, Lu F, Cui Y, Cui L, He W. Adoptive immunotherapy of lung cancer with immobilized anti-TCRgammadelta antibody-expanded human gammadelta T-cells in peripheral blood. Cancer Biol. Ther. August 2009, 8 (16): 1540–9. PMID 19471115. doi:10.4161/cbt.8.16.8950.
- ^ Overes IM, Fredrix H, Kester MG, Falkenburg JH, van der Voort R, de Witte TM, Dolstra H. Efficient activation of LRH-1-specific CD8+ T-cell responses from transplanted leukemia patients by stimulation with P2X5 mRNA-electroporated dendritic cells. J. Immunother. 2009, 32 (6): 539–51. PMID 19483655. doi:10.1097/CJI.0b013e3181987c22.
- ^ Di Lorenzo G, Buonerba C, Kantoff PW. Immunotherapy for the treatment of prostate cancer. Nature Reviews Clinical Oncology. September 2011, 8 (9): 551–61. PMID 21606971. doi:10.1038/nrclinonc.2011.72.
- ^ 20.0 20.1 20.2 Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nature Reviews Cancer. April 2008, 8 (4): 299–308. PMC 2553205 . PMID 18354418. doi:10.1038/nrc2355.
- ^ Antony PA, Piccirillo CA, Akpinarli A, Finkelstein SE, Speiss PJ, Surman DR, Palmer DC, Chan CC, Klebanoff CA, Overwijk WW, Rosenberg SA, Restifo NP. CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. Journal of Immunology. March 2005, 174 (5): 2591–601. PMC 1403291 . PMID 15728465. doi:10.4049/jimmunol.174.5.2591.
- ^ Gattinoni L, Finkelstein SE, Klebanoff CA, Antony PA, Palmer DC, Spiess PJ, Hwang LN, Yu Z, Wrzesinski C, Heimann DM, Surh CD, Rosenberg SA, Restifo NP. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J. Exp. Med. October 2005, 202 (7): 907–12. PMC 1397916 . PMID 16203864. doi:10.1084/jem.20050732.
- ^ Dummer W, Niethammer AG, Baccala R, Lawson BR, Wagner N, Reisfeld RA, Theofilopoulos AN. T cell homeostatic proliferation elicits effective antitumor autoimmunity. J. Clin. Invest. July 2002, 110 (2): 185–92. PMC 151053 . PMID 12122110. doi:10.1172/JCI15175.
- ^ Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U, Robbins PF, Huang J, Citrin DE, Leitman SF, Wunderlich J, Restifo NP, Thomasian A, Downey SG, Smith FO, Klapper J, Morton K, Laurencot C, White DE, Rosenberg SA. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J. Clin. Oncol. November 2008, 26 (32): 5233–9. PMC 2652090 . PMID 18809613. doi:10.1200/JCO.2008.16.5449.
- ^ Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM, Robinson MR, Raffeld M, Duray P, Seipp CA, Rogers-Freezer L, Morton KE, Mavroukakis SA, White DE, Rosenberg SA. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science. October 2002, 298 (5594): 850–4. PMC 1764179 . PMID 12242449. doi:10.1126/science.1076514.
- ^ Pilon-Thomas S, Kuhn L, Ellwanger S, Janssen W, Royster E, Marzban S, Kudchadkar R, Zager J, Gibney G, Sondak VK, Weber J, Mulé JJ, Sarnaik AA. Efficacy of adoptive cell transfer of tumor-infiltrating lymphocytes after lymphopenia induction for metastatic melanoma. J. Immunother. October 2012, 35 (8): 615–20. PMID 22996367. doi:10.1097/CJI.0b013e31826e8f5f.
- ^ Manjunath SR, Ramanan G, Dedeepiya VD, Terunuma H, Deng X, Baskar S, Senthilkumar R, Thamaraikannan P, Srinivasan T, Preethy S, Abraham SJ. Autologous immune enhancement therapy in recurrent ovarian cancer with metastases: a case report. Case Rep Oncol. January 2012, 5 (1): 114–8. PMC 3364094 . PMID 22666198. doi:10.1159/000337319.
- ^ Li Y, Zhang T, Ho C, Orange JS, Douglas SD, Ho WZ. Natural killer cells inhibit hepatitis C virus expression. J. Leukoc. Biol. December 2004, 76 (6): 1171–9. PMID 15339939. doi:10.1189/jlb.0604372.
- ^ Doskali M, Tanaka Y, Ohira M, Ishiyama K, Tashiro H, Chayama K, Ohdan H. Possibility of adoptive immunotherapy with peripheral blood-derived CD3⁻CD56+ and CD3+CD56+ cells for inducing antihepatocellular carcinoma and antihepatitis C virus activity. J. Immunother. March 2011, 34 (2): 129–38. PMID 21304407. doi:10.1097/CJI.0b013e3182048c4e.
- ^ Terunuma H, Deng X, Dewan Z, Fujimoto S, Yamamoto N. Potential role of NK cells in the induction of immune responses: implications for NK cell-based immunotherapy for cancers and viral infections. Int. Rev. Immunol. 2008, 27 (3): 93–110. PMID 18437601. doi:10.1080/08830180801911743.
- ^ See DM, Tilles JG. alpha-Interferon treatment of patients with chronic fatigue syndrome. Immunol. Invest. 1996, 25 (1–2): 153–64. PMID 8675231. doi:10.3109/08820139609059298.
- ^ Ojo-Amaize EA, Conley EJ, Peter JB. Decreased natural killer cell activity is associated with severity of chronic fatigue immune dysfunction syndrome. Clin. Infect. Dis. January 1994,. 18 Suppl 1: S157–9. PMID 8148445. doi:10.1093/clinids/18.Supplement_1.S157.
- ^ Kida K, Isozumi R, Ito M. Killing of human Herpes virus 6-infected cells by lymphocytes cultured with interleukin-2 or -12. Pediatr Int. December 2000, 42 (6): 631–6. PMID 11192519. doi:10.1046/j.1442-200x.2000.01315.x.
- ^ Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, Royal RE, Topalian SL, Kammula US, Restifo NP, Zheng Z, Nahvi A, de Vries CR, Rogers-Freezer LJ, Mavroukakis SA, Rosenberg SA. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science. October 2006, 314 (5796): 126–9. PMC 2267026 . PMID 16946036. doi:10.1126/science.1129003.
- ^ Hunder NN, Wallen H, Cao J, Hendricks DW, Reilly JZ, Rodmyre R, Jungbluth A, Gnjatic S, Thompson JA, Yee C. Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. N. Engl. J. Med. June 2008, 358 (25): 2698–703. PMC 3277288 . PMID 18565862. doi:10.1056/NEJMoa0800251.
- ^ 2008 Symposium Program & Speakers. Cancer Research Institute. [2016-04-20]. (原始內容存檔於2008-10-15).
- ^ 存档副本. [2020-10-01]. (原始內容存檔於2020-05-31).[需要完整來源]
- ^ Rotrosen D, Matthews JB, Bluestone JA. The immune tolerance network: a new paradigm for developing tolerance-inducing therapies. The Journal of Allergy and Clinical Immunology. July 2002, 110 (1): 17–23. PMID 12110811. doi:10.1067/mai.2002.124258.
- ^ Durham SR, Walker SM, Varga EM, Jacobson MR, O'Brien F, Noble W, Till SJ, Hamid QA, Nouri-Aria KT. Long-term clinical efficacy of grass-pollen immunotherapy. N. Engl. J. Med. August 1999, 341 (7): 468–75. PMID 10441602. doi:10.1056/NEJM199908123410702.
- ^ Clinical Trials Search Results - Stanford University School of Medicine. med.stanford.edu. [2016-04-03]. (原始內容存檔於2016-10-22).
- ^ Correale J, Farez M. Association between parasite infection and immune responses in multiple sclerosis. Annals of Neurology. February 2007, 61 (2): 97–108. PMID 17230481. doi:10.1002/ana.21067.
- ^ Croese J, O'neil J, Masson J, Cooke S, Melrose W, Pritchard D, Speare R. A proof of concept study establishing Necator americanus in Crohn's patients and reservoir donors. Gut. January 2006, 55 (1): 136–7. PMC 1856386 . PMID 16344586. doi:10.1136/gut.2005.079129.
- ^ Reddy A, Fried B. An update on the use of helminths to treat Crohn's and other autoimmunune diseases. Parasitol. Res. January 2009, 104 (2): 217–21. PMID 19050918. doi:10.1007/s00436-008-1297-5.
- ^ Laclotte C, Oussalah A, Rey P, Bensenane M, Pluvinage N, Chevaux JB, Trouilloud I, Serre AA, Boucekkine T, Bigard MA, Peyrin-Biroulet L. [Helminths and inflammatory bowel diseases]. Gastroenterol. Clin. Biol. December 2008, 32 (12): 1064–74. PMID 18619749. doi:10.1016/j.gcb.2008.04.030 (法語).
- ^ Zaccone P, Fehervari Z, Phillips JM, Dunne DW, Cooke A. Parasitic worms and inflammatory diseases. Parasite Immunol. October 2006, 28 (10): 515–23. PMC 1618732 . PMID 16965287. doi:10.1111/j.1365-3024.2006.00879.x.
- ^ 46.0 46.1 Brooker S, Bethony J, Hotez PJ. Human Hookworm Infection in the 21st Century. Advances in Parasitology. 2004, 58: 197–288. ISBN 9780120317585. PMC 2268732 . PMID 15603764. doi:10.1016/S0065-308X(04)58004-1.
- ^ Fujiwara RT, Cançado GG, Freitas PA, Santiago HC, Massara CL, Dos Santos Carvalho O, Corrêa-Oliveira R, Geiger SM, Bethony J. Yazdanbakhsh, Maria , 編. Necator americanus infection: a possible cause of altered dendritic cell differentiation and eosinophil profile in chronically infected individuals. PLoS Negl Trop Dis. 2009, 3 (3): e399. PMC 2654967 . PMID 19308259. doi:10.1371/journal.pntd.0000399.
- ^ Carvalho L, Sun J, Kane C, Marshall F, Krawczyk C, Pearce EJ. Review series on helminths, immune modulation and the hygiene hypothesis: mechanisms underlying helminth modulation of dendritic cell function. Immunology. January 2009, 126 (1): 28–34. PMC 2632707 . PMID 19120496. doi:10.1111/j.1365-2567.2008.03008.x.
- ^ Fumagalli M, Pozzoli U, Cagliani R, Comi GP, Riva S, Clerici M, Bresolin N, Sironi M. Parasites represent a major selective force for interleukin genes and shape the genetic predisposition to autoimmune conditions. J. Exp. Med. June 2009, 206 (6): 1395–408. PMC 2715056 . PMID 19468064. doi:10.1084/jem.20082779.