鐵氧體
鐵氧體(英語:Ferrite)是一種陶瓷材料,以氧化鐵為其主要成份[1]。大部份的鐵氧體是磁性材料,用來製作永久磁鐵、變壓器的鐵芯及其他相關的應用。
性質
鐵氧體一般是不導電的亞鐵磁性陶瓷材料,是從赤鐵礦(Fe2O3)或磁鐵礦(Fe3O4)中提煉而得。鐵氧體類似其他金屬氧化物,硬度高、具脆性。鐵氧體依照其磁矯頑力的低或高,區分為「軟磁體」或「硬磁體」。
化學式
許多鐵氧體屬於尖晶石,其化學式是AB2O4,A和B是不同的金屬陽離子,一般包括鐵離子。尖晶石的鐵氧體一般會是立方晶系(fcc)的氧化物。不過也有可能出現化學式為[M2+1-δFe3+δ][M2+δFe3+2-δ]O4的混合結構,其中δ為反位程度(degree of inversion)。
有一種稱為ZnFe的磁性材料,其化學式為ZnFe2O4,其中Fe3+位在八面體間隙的位置,而Zn2+在四面體間隙的位置,這是一種正常尖晶石鐵氧體結構的例子[2]。
有些鐵氧體為六方晶系,例如鋇鐵氧體BaO:6Fe2O3或BaFe12O19。
軟鐵氧體
用在變壓器或電磁鐵鐵芯的鐵氧體中包括有鎳、鋅或錳的化合物,其矯頑力低,一般會稱為軟鐵氧體。其矯頑力低意味着可以在不消耗許多能量(磁滯現象)的情形下,將材料的磁化強度由正變負,其材料本身的高電阻率也降低另一個能量損耗來源:渦電流的產生。由於在高頻的損失較低,常用在射頻變壓器的鐵芯及開關電源中用到的電抗器。
常見的軟鐵氧體有:
- 錳鋅鐵氧體(MnZn,化學式為MnaZn(1-a)Fe2O4),其磁導率及飽和感應(saturation induction)都較鎳鋅鐵氧體要高。
- 鎳鋅鐵氧體(NiZn,化學式為NiaZn(1-a)Fe2O4),其電阻率高於錳鋅鐵氧體,較適合用在超過1 MHz頻段的應用。
硬鐵氧體
用在永久磁鐵的鐵氧體為硬鐵氧體,有較高的矯頑力和磁化後的剩磁。氧化鐵及碳酸鋇或碳酸鍶用於製造硬鐵氧體。[3][4]因為其高矯頑力,硬鐵氧體不易被退磁,這也是永久磁鐵的一個重要特性。硬鐵氧體可以產生磁通,也有較高的磁導率。硬鐵氧體也稱作陶瓷磁鐵,其價格便宜,常用在家用製品中(例如冰箱磁鐵)。硬鐵氧體可以產生的最大磁場B約0.35T,而最大磁場強度H約30至160千安培匝每米(400至2000奧斯特)[5],密度約5g/cm3。
常見的硬鐵氧體有:
- 鍶鐵氧體,SrFe12O19 (SrO·6Fe2O3),用於微波裝置、記錄介質、磁光介質、電訊和電子工業。[6]
- 鋇鐵氧體,BaFe12O19 (BaO·6Fe2O3),是常用於永久磁鐵的材料,鋇鐵氧體是較強韌的陶瓷,在濕氣下穩定,可以抗腐蝕,常用在重低音揚聲器磁鐵,也用作磁儲存介質,如磁條。
- 鈷鐵氧體,CoFe2O4 (CoO·Fe2O3),也用做磁儲存的介質[7]。
製造
鐵氧體的製造方式是將細小粉末的氧化鐵和碳酸鹽原料壓入模具中,然後加熱。加熱過程中會鍛燒碳酸鹽:
- MCO3 → MO + CO2
因此鐵氧體中的氧化鋇及氧化鍶一般會由其碳酸鹽,碳酸鋇及碳酸鍶提供。 氧化物的混合物再進行類似陶瓷製作過程要進行的高溫燒結。
燒結後的產物會再研磨到小於2µm的顆粒大小,此大小的顆粒很小,每個顆粒只包括單磁疇,粉末再壓製成形、乾燥、再次燒結,成形過程可以放在有外加磁場的環境中,可以得到較好的各向異性,可以作為磁鐵使用。
若成品較小,形成較簡單,也可以直接用乾式壓模的方式製造。不過在製造過程中粒子有可能會結塊形成較大的磁疇.其磁特性會不如用濕式壓模製造的製品。也可以在鍛燒後不經研磨,只作一次的燒結,不過其磁特性也會較差。
電磁鐵也要經過預燒結、研磨及壓模,不過燒結時會置放在特殊的氣體中,例如氧氣很少的大氣中。原料和燒結後成品的化學成份和物體結構會有很大的差異。
鐵氧體在製造時會希望會是疊層的結構,為了使各層的鐵氧體在燒結時不要粘在一起,許多製造商在生產時會用一般陶瓷粉末的分隔層,分隔層可以由許多的材料組成,包括鋁、鋅及錳的化合物。分隔層的原料也可以是細小的顆粒或是大顆粒。適當調整磁性材料及分隔層材料顆粒的大小,可以在增加鐵氧體產量的同時,減少表面的損壞及污染。
應用
鐵氧體常用在製作電感器、變壓器及電磁鐵中的鐵芯,鐵氧體的高電阻可以減少其渦電流損失。鐵氧體的鐵芯也常放在電腦的電源線及信號線上,稱為磁珠,可以避免高頻的電磁雜訊(電磁干擾)進入設備或從設備中傳出。
早期的電腦記憶體利用硬鐵氧體鐵芯的剩磁記錄資料,一般會組合成磁芯記憶體的陣列。鐵氧體的粉末也用在磁帶的塗層中,最常見的是氧化鐵。
鐵氧體顆粒也做為隱形飛機使用的雷達波吸收塗層,在電磁相容量測用的實驗室中,也會用鐵氧體顆粒來吸收電磁波,避免反射。
許多收音機中的磁鐵及喇叭中的磁鐵都是鐵氧體磁鐵,鐵氧體磁鐵已經取代鋁鎳鈷磁鐵在此領域的應用。
在電結他的拾音器中,磁性拾音器也會用鐵氧體為其磁性材料。
參考資料
- ^ Carter, C. Barry; Norton, M. Grant "Ceramic materials: science and engineering" Springer, 2007. ISBN 0-387-46270-8.
- ^ Shriver, D. F.; Atkins, P. W.; Overton, T. L.; Rourke, J. P.; Weller, M. T.; Armstrong, F. A. 「Inorganic Chemistry」 W. H. Freeman, New York, 2006. ISBN 0-7167-4878-9.
- ^ Ferrite Permanent Magnets. Arnold Magnetic Technologies. [18 January 2014]. (原始內容存檔於2012-05-14).
- ^ Barium Carbonate. Chemical Products Corporation. [18 January 2014]. (原始內容存檔於2014-02-01).
- ^ Amorphous Magnetic Cores. Hill Technical Sales. 2006 [18 January 2014]. (原始內容存檔於2020-07-11).
- ^ Ullah, Zaka; Atiq, Shahid; Naseem, Shahzad. Influence of Pb doping on structural, electrical and magnetic properties of Sr-hexaferrites. Journal of Alloys and Compounds. 2013, 555: 263–267. doi:10.1016/j.jallcom.2012.12.061.
- ^ Synthesis and Magnetic Properties of Cobalt Ferrite (CoFe2O4) Nanoparticles Prepared by Wet Chemical Route (PDF). [2013-02-26]. (原始內容存檔於2019-07-01).