跳至內容

空矩陣

維基百科,自由的百科全書

空矩陣是指至少有一個維度為零的矩陣,亦即行數或列數為零的矩陣。[1][2]最小的空矩陣為0×0矩陣。空矩陣亦可以是0×5或10×0等形式[3]。空矩陣不會存在任何元素。

定義

空矩陣的定義可以完善一些關於零維空間的約定。包括約定一個矩陣與空矩陣相乘得到的也是空矩陣,兩個的空矩陣相乘是一個零矩陣(所有元素都是零的矩陣)。0×0的空矩陣的行列式約定為1,所以它也可以有逆矩陣,約定為它自己[4]:18

性質

  • 維數相同的空矩陣與空矩陣相乘仍為空矩陣[5]
  • 空矩陣與純量或向量相乘仍為空矩陣[5]
  • 的空矩陣和的空矩陣相乘結果為零矩陣[5]
  • 的空矩陣和任一的矩陣相乘結果為的空矩陣[5]
  • 任一的矩陣和的空矩陣相乘結果為的空矩陣[5]
  • 空矩陣的行列式約定為1,即空積[4]
  • 空矩陣等於零維零矩陣等於零維單位矩陣[6]
  • 空矩陣的反矩陣為自身。[4]:18
    由於
    因此,滿足反矩陣與自身相乘為單位矩陣的定義。
  • 空矩陣的為0[7]

參見

參考文獻

  1. ^ "Empty Matrix: A matrix is empty if either its row or column dimension is zero". O-Matrix v6 User Guide. (原始內容存檔於2009-04-29). 
  2. ^ Matrix - MATLAB Data Structures. system.nada.kth.se. (原始內容存檔於2009-12-28). A matrix having at least one dimension equal to zero is called an empty matrix 
  3. ^ Empty Matrices. www.ece.northwestern.edu. [2022-04-29]. (原始內容存檔於2020-02-18). 
  4. ^ 4.0 4.1 4.2 Faliva, Mario; Zoia, Maria Grazia, Dynamic Model Analysis: Advanced Matrix Methods and Unit-Root Econometrics Representation Theorems 2nd, Berlin, DE; New York, NY: Springer-Verlag: 218, 2008, ISBN 9783540859956 
  5. ^ 5.0 5.1 5.2 5.3 5.4 4.1.1 Empty Matrices. octave.org. [2022-04-29]. (原始內容存檔於2019-09-13). 
  6. ^ Nett, C.N. and Haddad, W.M. A system-theoretic appropriate realization of the empty matrix concept. IEEE Transactions on Automatic Control. 1993, 38 (5): 771–775. doi:10.1109/9.277245. 
  7. ^ empty matrix. scilab.org. [2022-04-29]. (原始內容存檔於2020-12-05).