跳至內容

歐拉偽質數

本頁使用了標題或全文手工轉換
維基百科,自由的百科全書

歐拉偽質數(英語:Euler pseudoprime)是偽質數的一種。對於奇合數n以及與其互質的自然數a,如果

成立,則稱n為關於a的歐拉偽質數。歐拉偽質數是費馬偽質數的推廣,所有歐拉偽質數同時也是費馬偽質數。

與費馬偽質數類似,歐拉偽質數的定義也是源於費馬小定理。該定理表明,對於質數p以及整數a,有 ap−1 = 1 (mod p)。對大於2的質數pp可以表示為2q + 1 ,其中q為整數。於是a(2q+1) − 1 = 1 (mod p) 成立。再進一步化簡為a2q − 1 = 0 (mod p)。通過因式分解,得到(aq − 1)(aq + 1) = 0 (mod p),即a(p−1)/2 = ±1 (mod p)。

上式可以用作概率質性檢驗,其可靠性是費馬質性檢驗的兩倍。不過無法基於歐拉偽質數對質數進行確定性檢驗,因為存在絕對歐拉偽質數,即其關於所有與其互質的數都是歐拉偽質數。絕對歐拉偽質數是卡米高數(即絕對費馬偽質數)的子集。最小的絕對歐拉偽質數為1729 = 7×13×19。

示例

n 關於n的歐拉偽質數
1 9, 15, 21, 25, 27, 33, 35, 39, 45, 49, 51, 55, 57, 63, 65, 69, 75, 77, 81, 85, 87, 91, 93, 95, 99, 105, 111, 115, 117, 119, 121, 123, 125, 129, 133, 135, 141, 143, 145, 147, 153, 155, 159, 161, 165, 169, 171, 175, 177, 183, 185, 187, 189, 195, 201, 203, 205, 207, 209, 213, 215, 217, 219, 221, 225, 231, 235, 237, 243, 245, 247, 249, 253, 255, 259, 261, 265, 267, 273, 275, 279, 285, 287, 289, 291, 295, 297, 299, ...
2 341, 561, 1105, 1729, 1905, 2047, 2465, 3277, 4033, 4681, 5461, 6601, 8321, 8481, ...
3 121, 703, 1541, 1729, 1891, 2465, 2821, 3281, 4961, 7381, 8401, 8911, ...
4 341, 561, 645, 1105, 1387, 1729, 1905, 2047, 2465, 2701, 2821, 3277, 4033, 4369, 4371, 4681, 5461, 6601, 7957, 8321, 8481, 8911, ...
5 217, 781, 1541, 1729, 5461, 5611, 6601, 7449, 7813, ...
6 185, 217, 301, 481, 1111, 1261, 1333, 1729, 2465, 2701, 3421, 3565, 3589, 3913, 5713, 6533, 8365, ...
7 25, 325, 703, 817, 1825, 2101, 2353, 2465, 3277, 4525, 6697, 8321, ...
8 9, 21, 65, 105, 133, 273, 341, 481, 511, 561, 585, 1001, 1105, 1281, 1417, 1541, 1661, 1729, 1905, 2047, 2465, 2501, 3201, 3277, 3641, 4033, 4097, 4641, 4681, 4921, 5461, 6305, 6533, 6601, 7161, 8321, 8481, 9265, 9709, ...
9 91, 121, 671, 703, 949, 1105, 1541, 1729, 1891, 2465, 2665, 2701, 2821, 3281, 3367, 3751, 4961, 5551, 6601, 7381, 8401, 8911, ...
10 9, 33, 91, 481, 657, 1233, 1729, 2821, 2981, 4187, 5461, 6533, 6541, 6601, 7777, 8149, 8401, ...
11 133, 305, 481, 645, 793, 1729, 2047, 2257, 2465, 4577, 4921, 5041, 5185, 8113, ...
12 65, 91, 133, 145, 247, 377, 385, 1649, 1729, 2041, 2233, 2465, 2821, 3553, 6305, 8911, 9073, ...
13 21, 85, 105, 561, 1099, 1785, 2465, 5149, 5185, 7107, 8841, 8911, 9577, 9637, ...
14 15, 65, 481, 781, 793, 841, 985, 1541, 2257, 2465, 2561, 2743, 3277, 5185, 5713, 6533, 6541, 7171, 7449, 7585, 8321, 9073, ...
15 341, 1477, 1541, 1687, 1729, 1921, 3277, 6541, 9073, ...
16 15, 85, 91, 341, 435, 451, 561, 645, 703, 1105, 1247, 1271, 1387, 1581, 1695, 1729, 1891, 1905, 2047, 2071, 2465, 2701, 2821, 3133, 3277, 3367, 3683, 4033, 4369, 4371, 4681, 4795, 4859, 5461, 5551, 6601, 6643, 7957, 8321, 8481, 8695, 8911, 9061, 9131, 9211, 9605, 9919, ...
17 9, 91, 145, 781, 1111, 1305, 1729, 2149, 2821, 4033, 4187, 5365, 5833, 6697, 7171, ...
18 25, 49, 65, 133, 325, 343, 425, 1105, 1225, 1369, 1387, 1729, 1921, 2149, 2465, 2977, 4577, 5725, 5833, 5941, 6305, 6517, 6601, 7345, ...
19 9, 45, 49, 169, 343, 561, 889, 905, 1105, 1661, 1849, 2353, 2465, 2701, 3201, 4033, 4681, 5461, 5713, 6541, 6697, 7957, 8145, 8281, 8401, 9997, ...
20 21, 57, 133, 671, 889, 1281, 1653, 1729, 1891, 2059, 2413, 2761, 3201, 5461, 5473, 5713, 5833, 6601, 6817, 7999, ...
21 65, 221, 703, 793, 1045, 1105, 2465, 3781, 5185, 5473, 6541, 7363, 8965, 9061, ...
22 21, 69, 91, 105, 161, 169, 345, 485, 1183, 1247, 1541, 1729, 2041, 2047, 2413, 2465, 2821, 3241, 3801, 5551, 7665, 9453, ...
23 33, 169, 265, 341, 385, 481, 553, 1065, 1271, 1729, 2321, 2465, 2701, 2821, 3097, 4033, 4081, 4345, 4371, 4681, 5149, 6533, 6541, 7189, 7957, 8321, 8651, 8745, 8911, 9805, ...
24 25, 175, 553, 805, 949, 1541, 1729, 1825, 1975, 2413, 2465, 2701, 3781, 4537, 6931, 7501, 9085, 9361, ...
25 217, 561, 781, 1541, 1729, 1891, 2821, 4123, 5461, 5611, 5731, 6601, 7449, 7813, 8029, 8911, 9881, ...
26 9, 25, 27, 45, 133, 217, 225, 475, 561, 589, 703, 925, 1065, 2465, 3325, 3385, 3565, 3825, 4741, 4921, 5041, 5425, 6697, 8029, 9073, ...
27 65, 121, 133, 259, 341, 365, 481, 703, 1001, 1541, 1649, 1729, 1891, 2465, 2821, 2981, 2993, 3281, 4033, 4745, 4921, 4961, 5461, 6305, 6533, 7381, 7585, 8321, 8401, 8911, 9809, 9841, 9881, ...
28 9, 27, 145, 261, 361, 529, 785, 1305, 1431, 2041, 2413, 2465, 3201, 3277, 4553, 4699, 5149, 7065, 8321, 8401, 9841, ...
29 15, 21, 91, 105, 341, 469, 481, 793, 871, 1729, 1897, 2105, 2257, 2821, 4371, 4411, 5149, 5185, 5473, 5565, 6097, 7161, 8321, 8401, 8421, 8841, ...
30 49, 133, 217, 341, 403, 469, 589, 637, 871, 901, 931, 1273, 1537, 1729, 2059, 2077, 2821, 3097, 3277, 4081, 4097, 5729, 6031, 6061, 6097, 6409, 6817, 7657, 8023, 8029, 8401, 9881, ...

關於n的最小歐拉偽質數

n 最小歐拉偽質數 n 最小歐拉偽質數 n 最小歐拉偽質數 n 最小歐拉偽質數
1 9 33 545 65 33 97 21
2 341 34 21 66 65 98 9
3 121 35 9 67 33 99 25
4 341 36 35 68 25 100 9
5 217 37 9 69 35 101 25
6 185 38 39 70 69 102 133
7 25 39 133 71 9 103 51
8 9 40 39 72 85 104 15
9 91 41 21 73 9 105 451
10 9 42 451 74 15 106 15
11 133 43 21 75 91 107 9
12 65 44 9 76 15 108 91
13 21 45 133 77 39 109 9
14 15 46 9 78 77 110 111
15 341 47 65 79 39 111 55
16 15 48 49 80 9 112 65
17 9 49 25 81 91 113 21
18 25 50 21 82 9 114 115
19 9 51 25 83 21 115 57
20 21 52 51 84 85 116 9
21 65 53 9 85 21 117 49
22 21 54 55 86 65 118 9
23 33 55 9 87 133 119 15
24 25 56 33 88 87 120 77
25 217 57 25 89 9 121 15
26 9 58 57 90 91 122 33
27 65 59 15 91 9 123 85
28 9 60 341 92 21 124 25
29 15 61 15 93 25 125 9
30 49 62 9 94 57 126 25
31 15 63 341 95 141 127 9
32 25 64 9 96 65 128 49

參見

參考文獻

  • M. Koblitz, "A Course in Number Theory and Cryptography", Springer-Verlag, 1987.
  • H. Riesel, "Prime numbers and computer methods of factorisation", Birkhäuser, Boston, Mass., 1985.