跳至內容

奇異數 (數論)

本頁使用了標題或全文手工轉換
維基百科,自由的百科全書

在數論中,奇異數(或稱奇怪數)是指不是半完全數豐數[1] 也就是說此自然數之所有真因數(即小於此自然數之正因數)之和比此數自身大(豐數的定義),但其真因數不論如何組合,其和都不等於此自然數(因此不是半完全數)。

許多的豐數都是半完全數,如12的真因數有1, 2, 3, 4, 6,總和為16>12,因此為一豐數,但2+4+6=12,因此12也是半完全數,大多數的豐數都可以找到部份真因數,使其和等於本身。若豐數的真因數和都不等於本身,即為奇異數。

舉例

最小的奇異數是70,其真因數有1, 2, 5, 7, 10, 1435,總和為74,其中無法找到一組子集合,使其總和為70。因此70是奇異數。

奇異數有無窮多個,最小的一些奇異數是:70, 836, 4030, 5830, 7192, 7912, 9272, 10430, ... (OEIS數列A006037)。

性質

存在無限多個奇異數[2]。例如,70p為奇異數,針對大於等於149的質數p都成立。實際上,奇異數集合自然密度為正值[3]

目前已知的奇異數均為偶數,還不確定是否存在奇數的奇異數,若其存在,其數值必大於1021[4]

Sidney Kravitz證明針對正整數kQ是超過2k的質數,且

也是2k的質數,則

是奇異數[5]

Sidney Kravitz根據此公式,找到最大的奇異數

參照

  1. ^ Benkoski, Stan. E2308(in Problems and Solutions). The American Mathematical Monthly. Aug.-September 1972, 79 (7): 774. doi:10.2307/2316276. 
  2. ^ Sándor, József; Mitrinović, Dragoslav S.; Crstici, Borislav (編). Handbook of number theory I. Dordrecht: Springer-Verlag. 2006: 113–114. ISBN 1-4020-4215-9. Zbl 1151.11300. 
  3. ^ Benkoski, Stan; Erdős, Paul. On Weird and Pseudoperfect Numbers. Mathematics of Computation. April 1974, 28 (126): 617–623. JSTOR 2005938. MR 0347726. Zbl 0279.10005. doi:10.2307/2005938可免費查閱. 
  4. ^ Sloane, N.J.A. (編). Sequence A006037 (Weird numbers: abundant (A005101) but not pseudoperfect (A005835)). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.  -- comments concerning odd weird numbers
  5. ^ Kravitz, Sidney. A search for large weird numbers. Journal of Recreational Mathematics (Baywood Publishing). 1976, 9 (2): 82–85. Zbl 0365.10003. 

參見