同餘 (英語:Congruence modulo [ 1] ,符號 :≡)在數學 中是指數論 中的一種等價關係 [ 2] 。當兩個整數 除 以同一個正整數 ,若得相同餘數 ,則二整數同餘 。同餘是抽象代數 中的同餘關係 的原型[ 3] 。最先引用同餘的概念 與「≡」符號 者為德國 數學家 高斯 。
定義
對某兩個整數
a
{\displaystyle a}
,
b
{\displaystyle b}
,若它們除 以正整數
m
{\displaystyle m}
所得的餘數相等,則稱
a
{\displaystyle a}
,
b
{\displaystyle b}
對於模
m
{\displaystyle m}
同餘,也就是嚴格來說,存在整數
k
{\displaystyle k}
使得
a
−
b
=
k
m
{\displaystyle a-b=km}
則稱
a
,
b
{\displaystyle a,\,b}
對於除數
m
{\displaystyle m}
是同餘的 。一般記做
a
≡
b
(
mod
m
)
{\displaystyle a\equiv b{\pmod {m}}}
比如
26
−
14
=
12
=
1
×
12
{\displaystyle 26-14=12=1\times 12}
故可以記為
26
≡
14
(
mod
12
)
{\displaystyle 26\equiv 14{\pmod {12}}}
但另一方面,從
a
−
b
=
k
m
{\displaystyle a-b=km}
有
b
−
a
=
(
−
k
)
×
m
{\displaystyle b-a=(-k)\times m}
,故
a
≡
b
(
mod
m
)
{\displaystyle a\equiv b{\pmod {m}}}
等價於
b
≡
a
(
mod
m
)
{\displaystyle b\equiv a{\pmod {m}}}
同餘 符號「≡ 」其UTF-8 碼為U+2261
。
同餘類
可以證明所有對於模
m
{\displaystyle m}
同餘的整數對構成一個(整數 系
Z
{\displaystyle \mathbb {Z} }
上的)等價關係 ,換句話說,對於任意兩個整數
a
{\displaystyle a}
,
b
{\displaystyle b}
:
(1)
a
≡
a
(
mod
m
)
{\displaystyle a\equiv a{\pmod {m}}}
(2)
[
a
≡
b
(
mod
m
)
]
⇒
[
b
≡
a
(
mod
m
)
]
{\displaystyle [a\equiv b{\pmod {m}}]\Rightarrow [b\equiv a{\pmod {m}}]}
(3)
{
[
a
≡
b
(
mod
m
)
]
∧
[
b
≡
c
(
mod
m
)
]
}
⇒
[
a
≡
c
(
mod
m
)
]
{\displaystyle {\big \{}[a\equiv b{\pmod {m}}]\wedge [b\equiv c{\pmod {m}}]{\big \}}\Rightarrow [a\equiv c{\pmod {m}}]}
故以下的集合
[
a
]
m
:=
{
z
∈
Z
|
(
∃
k
∈
Z
)
(
z
=
a
+
k
m
)
}
{\displaystyle {[a]}_{m}:=\left\{z\in \mathbb {Z} \,{\big |}\,(\exists k\in \mathbb {Z} )(z=a+km)\right\}}
=
{
…
,
a
−
2
m
,
a
−
m
,
a
,
a
+
m
,
a
+
2
m
,
…
}
{\displaystyle \;\;\;\;\;\,=\left\{\ldots ,a-2m,a-m,a,a+m,a+2m,\ldots \right\}}
可稱為
a
{\displaystyle a}
對於模
m
{\displaystyle m}
的同餘類 (congruence class 或residue class ),也可標記為
a
¯
m
{\displaystyle {\overline {a}}_{m}}
;模
m
{\displaystyle m}
在上下文很清楚時,也可簡記為
[
a
]
{\displaystyle \displaystyle [a]}
。
a
{\displaystyle a}
會被稱為該同餘類的代表數 (representative )[ 4] 。
剩餘系
剩餘系 [ 5] [ 6] (英語:residue system )亦即模
n
{\displaystyle n}
同餘類的代表數的集合,通常使用的代表數是最小非負整數,因為它是除法中的應當餘數。要注意的是,對於同一個模數
n
{\displaystyle n}
,不同的同餘類不等價,亦即,屬於不同同餘類的整數不同餘於模數
n
{\displaystyle n}
,或者說,模
n
{\displaystyle n}
剩餘系中的任二元素不同餘於模
n
{\displaystyle n}
;而且,整數體中的每個整數只屬於模數
n
{\displaystyle n}
的一個同餘類,因為模
n
{\displaystyle n}
將整數體劃分 為互斥區塊,每個區塊是一個同餘類。
一個完全剩餘系 (英語:complete residue system )指的是模
n
{\displaystyle n}
的全部同餘類的代表數的集合;因為剩餘系中的任二元素不同餘於模
n
{\displaystyle n}
,所以它也稱為非同餘餘數的完整系統 (英語:complete system of incongruent residues )。例如,模
3
{\displaystyle 3}
有三個同餘類
[
0
]
,
[
1
]
,
[
2
]
{\displaystyle [0],[1],[2]}
,其完全剩餘系可以是
{
9
,
12
+
1
,
15
+
2
}
{\displaystyle \{9,12+1,15+2\}}
。如果該集合是由每個同餘類的最小非負整數所組成,亦即
{
0
,
1
,
2
,
.
.
.
,
n
−
1
}
{\displaystyle \{0,1,2,...,n-1\}}
,則稱該集合為模
n
{\displaystyle n}
的最小剩餘系 (英語:least residue system )。
模
n
{\displaystyle n}
完全剩餘系中,與模
n
{\displaystyle n}
互質的代表數所構成的集合,稱為模
n
{\displaystyle n}
的簡約剩餘系 (英語:reduced residue system ),其元素個數記為
ϕ
(
n
)
{\displaystyle \phi (n)}
,亦即歐拉函數 。例如,模
6
{\displaystyle 6}
的簡約剩餘系為
{
1
,
5
}
{\displaystyle \{1,5\}}
或
{
7
,
11
}
{\displaystyle \{7,11\}}
。如果模
n
{\displaystyle n}
是質數 ,那麼它的最小簡約剩餘系是
{
1
,
2
,
.
.
.
,
n
−
1
}
{\displaystyle \{1,2,...,n-1\}}
,只比最小剩餘系少一個
0
{\displaystyle 0}
。
性質
整除性
a
≡
b
(
mod
m
)
⇒
c
⋅
m
=
a
−
b
,
c
∈
Z
{\displaystyle a\equiv b{\pmod {m}}\Rightarrow c\cdot m=a-b,c\in \mathbb {Z} }
(即是說 a 和 b 之差是 m 的倍數) 換句話說,
a
≡
b
(
mod
m
)
⇒
m
∣
(
a
−
b
)
{\displaystyle a\equiv b{\pmod {m}}\Rightarrow m\mid (a-b)}
[ 註 1]
同餘可以用來檢驗一個數是否可以整除 另外一個數,見整除規則 。
遞移性
a
≡
b
(
mod
m
)
b
≡
c
(
mod
m
)
}
⇒
a
≡
c
(
mod
m
)
{\displaystyle \left.{\begin{matrix}a\equiv b{\pmod {m}}\\b\equiv c{\pmod {m}}\end{matrix}}\right\}\Rightarrow a\equiv c{\pmod {m}}}
保持基本運算
a
≡
b
(
mod
m
)
c
≡
d
(
mod
m
)
}
⇒
{
a
±
c
≡
b
±
d
(
mod
m
)
a
c
≡
b
d
(
mod
m
)
{\displaystyle \left.{\begin{matrix}a\equiv b{\pmod {m}}\\c\equiv d{\pmod {m}}\end{matrix}}\right\}\Rightarrow \left\{{\begin{matrix}a\pm c\equiv b\pm d{\pmod {m}}\\ac\equiv bd{\pmod {m}}\end{matrix}}\right.}
當
c
=
d
{\displaystyle c=d}
時,則為等量加法、減法:
a
±
c
≡
b
±
c
(
mod
m
)
{\displaystyle a\pm c\equiv b\pm c{\pmod {m}}}
這性質更可進一步引申成為這樣:
a
≡
b
(
mod
m
)
⇒
{
a
n
≡
b
n
(
mod
m
)
,
∀
n
∈
Z
a
n
≡
b
n
(
mod
m
)
,
∀
n
∈
N
∗
P
(
a
)
≡
P
(
b
)
(
mod
m
)
{\displaystyle a\equiv b{\pmod {m}}\Rightarrow {\begin{cases}an\equiv bn{\pmod {m}},\forall n\in \mathbb {Z} \\a^{n}\equiv b^{n}{\pmod {m}},\forall n\in \mathbb {N} ^{*}\\P(a)\equiv P(b){\pmod {m}}\end{cases}}}
[ 註 2]
其中
P
(
x
)
{\displaystyle P(x)}
為任意整系數多項式函數。
放大縮小底數
k為整數,n為正整數,
(
k
m
±
a
)
n
≡
(
±
a
)
n
(
mod
m
)
{\displaystyle (km\pm a)^{n}\equiv (\pm a)^{n}{\pmod {m}}}
放大縮小模數
k
{\displaystyle k}
為正整數,
a
≡
b
(
mod
m
)
{\displaystyle a\equiv b{\pmod {m}}}
,當且僅當
k
a
≡
k
b
(
mod
k
m
)
{\displaystyle ka\equiv kb{\pmod {km}}}
除法原理一
若
k
a
≡
k
b
(
mod
m
)
{\displaystyle ka\equiv kb{\pmod {m}}}
且
k
,
m
{\displaystyle k,m}
互質 ,則
a
≡
b
(
mod
m
)
{\displaystyle a\equiv b{\pmod {m}}}
除法原理二
每個正整數都可以分解為數個因數 的乘積,稱為整數分解 。例如
15
=
3
×
5
{\displaystyle 15=3\times 5}
,因數
3
{\displaystyle 3}
與
5
{\displaystyle 5}
都可以整除
15
{\displaystyle 15}
,記為
3
|
15
{\displaystyle 3|15}
與
5
|
15
{\displaystyle 5|15}
。如果
15
{\displaystyle 15}
可以整除某正整數
a
{\displaystyle a}
,亦即
15
|
a
{\displaystyle 15|a}
,那麼
15
{\displaystyle 15}
就是
a
{\displaystyle a}
的因數:
a
=
15
×
b
{\displaystyle a=15\times b}
,其中
b
{\displaystyle b}
為另一因數。
a
=
15
×
b
=
(
3
×
5
)
×
b
{\displaystyle a=15\times b=(3\times 5)\times b}
,因此,
15
{\displaystyle 15}
的因數也可以整除
a
{\displaystyle a}
:
(
3
|
15
)
∧
(
15
|
a
)
⇒
3
|
a
{\displaystyle (3|15)\wedge (15|a)\Rightarrow 3|a}
。
a
≡
b
(
mod
m
)
{\displaystyle a\equiv b{\pmod {m}}}
等價於
(
a
−
b
)
≡
0
(
mod
m
)
{\displaystyle (a-b)\equiv 0{\pmod {m}}}
,也就是
m
|
(
a
−
b
)
{\displaystyle m|(a-b)}
。亦即,如果
m
|
(
a
−
b
)
{\displaystyle m|(a-b)}
,那麼它可以寫成
a
≡
b
(
mod
m
)
{\displaystyle a\equiv b{\pmod {m}}}
,因此有以下除法原理:
m
{\displaystyle m}
的因數也可以整除
(
a
−
b
)
{\displaystyle (a-b)}
。亦即,
m
{\displaystyle m}
是
n
{\displaystyle n}
的倍數 :
m
=
c
×
n
{\displaystyle m=c\times n}
,
n
|
m
{\displaystyle n|m}
。因為
m
|
(
a
−
b
)
{\displaystyle m|(a-b)}
,所以
n
|
(
a
−
b
)
⇒
a
≡
b
(
mod
n
)
{\displaystyle n|(a-b)\Rightarrow a\equiv b{\pmod {n}}}
。
a
≡
b
(
mod
c
n
)
⇒
a
≡
b
(
mod
n
)
{\displaystyle a\equiv b{\pmod {cn}}\Rightarrow a\equiv b{\pmod {n}}}
a
≡
b
(
mod
m
)
n
|
m
}
⇒
a
≡
b
(
mod
n
)
{\displaystyle \left.{\begin{matrix}a\equiv b{\pmod {m}}\\n|m\end{matrix}}\right\}\Rightarrow a\equiv b{\pmod {n}}}
[ 註 1]
現假設
m
{\displaystyle m}
可以整除
(
a
−
b
)
{\displaystyle (a-b)}
的倍數
c
(
a
−
b
)
{\displaystyle c(a-b)}
。如果
m
{\displaystyle m}
和
c
{\displaystyle c}
互質(記為
(
m
,
c
)
=
1
{\displaystyle (m,c)=1}
),那麼
m
{\displaystyle m}
必定可以整除
(
a
−
b
)
{\displaystyle (a-b)}
:
m
|
(
a
−
b
)
⇒
a
≡
b
(
mod
m
)
{\displaystyle m|(a-b)\Rightarrow a\equiv b{\pmod {m}}}
。
a
c
≡
b
c
(
mod
m
)
(
c
,
m
)
=
1
}
⇒
a
≡
b
(
mod
m
)
{\displaystyle \left.{\begin{matrix}ac\equiv bc{\pmod {m}}\\(c,m)=1\end{matrix}}\right\}\Rightarrow a\equiv b{\pmod {m}}}
[ 註 3]
如果
m
1
|
(
a
−
b
)
{\displaystyle m_{1}|(a-b)}
而且
m
2
|
(
a
−
b
)
{\displaystyle m_{2}|(a-b)}
,那麼
m
1
{\displaystyle m_{1}}
與
m
2
{\displaystyle m_{2}}
的最小公倍數 必定可以整除
(
a
−
b
)
{\displaystyle (a-b)}
,記為
a
≡
b
(
mod
[
m
1
,
m
2
]
)
{\displaystyle a\equiv b{\pmod {[m_{1},m_{2}]}}}
。這可以推廣成以下性質:
a
≡
b
(
mod
m
1
)
a
≡
b
(
mod
m
2
)
⋮
a
≡
b
(
mod
m
n
)
(
n
≥
2
)
}
⇒
a
≡
b
(
mod
[
m
1
,
m
2
,
⋯
,
m
n
]
)
{\displaystyle \left.{\begin{matrix}a\equiv b{\pmod {m_{1}}}\\a\equiv b{\pmod {m_{2}}}\\\vdots \\a\equiv b{\pmod {m_{n}}}\\(n\geq 2)\end{matrix}}\right\}\Rightarrow a\equiv b{\pmod {[m_{1},m_{2},\cdots ,m_{n}]}}}
[ 註 4]
上面的最後一個性質可以使用算術基本定理 與集合 來解釋。一個大於1的正整數
q
{\displaystyle q}
可以分解為一串質數 冪的乘積:
q
=
p
1
c
1
×
p
2
c
2
×
.
.
.
×
p
n
c
n
{\displaystyle q=p_{1}^{c_{1}}\times p_{2}^{c_{2}}\times ...\times p_{n}^{c_{n}}}
(
p
i
{\displaystyle p_{i}}
兩兩相異,且
c
i
>
0
{\displaystyle c_{i}>0}
),令
S
q
{\displaystyle S_{q}}
為所有能整除
q
{\displaystyle q}
的質數冪的集合,即
S
q
=
{
p
1
,
p
1
2
,
⋯
,
p
1
c
1
,
p
2
,
p
2
2
,
⋯
,
p
2
c
2
,
⋯
,
p
n
,
p
n
2
,
⋯
,
p
n
c
n
}
{\displaystyle S_{q}=\{p_{1},p_{1}^{2},\cdots ,p_{1}^{c_{1}},p_{2},p_{2}^{2},\cdots ,p_{2}^{c_{2}},\cdots ,p_{n},p_{n}^{2},\cdots ,p_{n}^{c_{n}}\}}
。設
r
{\displaystyle r}
為正整數,則
r
{\displaystyle r}
整除
q
{\displaystyle q}
,當且僅當
S
r
{\displaystyle S_{r}}
是
S
q
{\displaystyle S_{q}}
的子集 。令
m
1
|
q
{\displaystyle m_{1}|q}
且
m
2
|
q
{\displaystyle m_{2}|q}
,則
S
m
1
{\displaystyle S_{m_{1}}}
與
S
m
2
{\displaystyle S_{m_{2}}}
的併集 必定也是
S
q
{\displaystyle S_{q}}
的子集。取這個併集中冪次最高的各個元素 ,它們的乘積就是
m
1
{\displaystyle m_{1}}
與
m
2
{\displaystyle m_{2}}
的最小公倍數
[
m
1
,
m
2
]
{\displaystyle [m_{1},m_{2}]}
。事實上,有
S
[
m
1
,
m
2
]
=
S
m
1
∪
S
m
2
{\displaystyle S_{[m_{1},m_{2}]}=S_{m_{1}}\cup S_{m_{2}}}
,所以
[
m
1
,
m
2
]
{\displaystyle [m_{1},m_{2}]}
也能夠整除
q
{\displaystyle q}
。
同餘關係式
威爾遜定理
(
p
−
1
)
!
≡
−
1
(
mod
p
)
{\displaystyle (p-1)!\ \equiv \ -1\ ({\mbox{mod}}\ p)}
費馬小定理
a
p
−
1
≡
1
(
mod
p
)
{\displaystyle a^{p-1}\equiv 1{\pmod {p}}}
歐拉定理
a
φ
(
n
)
≡
1
(
mod
n
)
{\displaystyle a^{\varphi (n)}\equiv 1{\pmod {n}}}
卡邁克爾函數
a
λ
(
n
)
≡
1
(
mod
n
)
{\displaystyle a^{\lambda (n)}\equiv 1{\pmod {n}}}
階乘冪
(
x
)
k
≡
x
(
x
−
1
)
(
x
−
2
)
⋯
(
x
−
k
+
1
)
≡
0
(
mod
k
!
)
{\displaystyle (x)_{k}\equiv x(x-1)(x-2)\cdots (x-k+1)\equiv 0{\pmod {k!}}}
盧卡斯定理
(
m
n
)
≡
∏
i
=
0
k
(
m
i
n
i
)
(
mod
p
)
,
{\displaystyle {\binom {m}{n}}\equiv \prod _{i=0}^{k}{\binom {m_{i}}{n_{i}}}{\pmod {p}},}
組合數最小週期
(
m
+
p
k
+
[
l
o
g
p
n
]
n
)
≡
(
m
n
)
(
mod
p
k
)
{\displaystyle {\binom {m+p^{k+[log_{p}n]}}{n}}\equiv {\binom {m}{n}}{\pmod {p^{k}}}}
設
N
=
∏
i
p
i
k
i
{\displaystyle N=\prod _{i}p_{i}^{k_{i}}}
,則
(
m
+
L
(
n
,
N
)
n
)
≡
(
m
n
)
(
mod
N
)
{\displaystyle {\binom {m+L(n,N)}{n}}\equiv {\binom {m}{n}}{\pmod {N}}}
,其中
L
(
n
,
N
)
=
∏
i
p
i
k
i
+
[
l
o
g
p
n
]
=
N
∏
i
p
i
[
l
o
g
p
n
]
{\displaystyle L(n,N)=\prod _{i}p_{i}^{k_{i}+[log_{p}n]}=N\prod _{i}p_{i}^{[log_{p}n]}}
[ 7]
相關概念
模反元素
a
−
1
a
˙
≡
1
(
mod
n
)
{\displaystyle a^{-1}{\dot {a}}\equiv 1{\pmod {n}}}
可用輾轉相除法 、歐拉定理 、卡邁克爾函數 求解。
原根
存在最小的正整數d使得
a
d
≡
1
(
mod
n
)
{\displaystyle a^{d}\equiv 1{\pmod {n}}}
成立,且
d
=
φ
(
n
)
{\displaystyle d=\varphi (n)}
。
同餘方程
線性同餘方程
a
x
≡
b
(
mod
n
)
{\displaystyle ax\equiv b{\pmod {n}}}
考慮最大公因數 ,有解時用輾轉相除法 等方法求解。
線性同餘方程組
{
a
1
x
≡
b
1
(
mod
m
1
)
a
2
x
≡
b
2
(
mod
m
2
)
⋮
a
n
x
≡
b
n
(
mod
m
n
)
{\displaystyle {\begin{cases}a_{1}x\equiv b_{1}{\pmod {m_{1}}}\\a_{2}x\equiv b_{2}{\pmod {m_{2}}}\\\qquad \qquad \vdots \\a_{n}x\equiv b_{n}{\pmod {m_{n}}}\\\end{cases}}}
先求解每一個線性同餘方程,再用中國剩餘定理 解方程組。
二次剩餘
x
2
≡
d
(
mod
p
)
{\displaystyle x^{2}\equiv d{\pmod {p}}}
勒壤得符號 、雅可比符號 、克羅內克符號 、二次互反律 用於判別d是否為模n的二次剩餘。
高次剩餘
x
n
≡
d
(
mod
p
)
{\displaystyle x^{n}\equiv d{\pmod {p}}}
例子
求自然數 a的個位數字,就是求a與哪一個數對於模10同餘。
10
≡
1
(
mod
3
)
,
10
n
≡
1
(
mod
3
)
,
10001
≡
10
4
+
1
≡
1
+
1
(
mod
3
)
{\displaystyle 10\equiv 1({\textrm {mod}}\ 3),10^{n}\equiv 1({\textrm {mod}}\ 3),10001\equiv 10^{4}+1\equiv 1+1({\textrm {mod}}\ 3)}
。
應用
模數算術在數論 、群論 、環論 、紐結理論 、抽象代數 、計算機代數 、密碼學 、計算機科學 、化學 、視覺 和音樂 等學科中皆有應用。
它是數論的立基點之一,與其各個面向都相關。
模數算術經常被用於計算標識符 中所使用的校驗和 ,比如國際銀行賬戶號碼 (IBANs)就用到了模97的算術,來捕獲用戶在輸入銀行帳戶號碼時的錯誤。
於密碼學中,模數算術是RSA 與迪菲-赫爾曼密鑰交換 等公鑰 系統的基礎,它同時也提供有限體 ,應用於 橢圓加密 ,且用於許多對稱密鑰加密 中,包括高級加密標準 、國際資料加密演算法 等。
於計算機科學, 同餘被應用於位元運算 或其他與固定寬度之循環資料結構 相關的操作。
於化學中, CAS號 (一個對各種化合物皆異之的識別碼)的最後一碼為校驗碼 ,將CAS號 首二部分最後的數字乘上一,下一碼乘上二,下一碼乘上三以此類推,將所有積加起來再取模10。
在音樂領域,模12用於十二平均律 系統。
星期的計算 中取模7算術極重要。
更廣泛而言,同餘在法律 、經濟 (見賽局理論 )或其他社會科學 領域中也有應用。
範例
以下為快速展示小於63位元無號整數之模數乘法的C程式,且轉換過程中不發生溢位。計算 a * b (mod m)之演算法:
uint64_t mul_mod ( uint64_t a , uint64_t b , uint64_t m )
{
uint64_t d = 0 , mp2 = m >> 1 ;
int i ;
if ( a >= m ) a %= m ;
if ( b >= m ) b %= m ;
for ( i = 0 ; i < 64 ; ++ i )
{
d = ( d > mp2 ) ? ( d << 1 ) - m : d << 1 ;
if ( a & 0x8000000000000000ULL )
d += b ;
if ( d > m ) d -= m ;
a <<= 1 ;
}
return d % m ;
}
註釋
參考文獻
參見