跳至內容

使用者:ItMarki/六維超正方體

本頁使用了標題或全文手工轉換
維基百科,自由的百科全書
六維超正方體
類型六維多胞體英語6-polytope
家族超方形
維度六維
對偶多胞形六維正軸體英語6-orthoplex
識別
名稱六維超正方體
鮑爾斯縮寫
verse-and-dimensions的wikiaBowers acronym
ax
數學表示法
考克斯特符號
英語Coxeter-Dynkin diagram
node_1 4 node 3 node 3 node 3 node 3 node 
施萊夫利符號{4,34}
性質
五維12個五維超正方體
四維60個超正方體
160個立方體
192個正方形
192
頂點64
特殊面或截面
皮特里多邊形正十二邊形
對稱性
對稱群B6, [34,4]
特性

幾何學中,六維超正方體(英語:6-cubehexeract)是一個正六維多胞體,由64個頂點、192個、240個正方形、160個立方體、60個四維超正方體胞和12個五維超正方體胞組成。它的施萊夫利符號是{4,34},代表每個四維胞周圍有3個五維超正方體。

相關多胞體

六維超正方體是超方形系列的一員。它的對偶多面體六維正軸體英語6-orthoplex,而六維正軸體是正軸形系列的一員。

對六維超正方體進行交錯(去除交替頂點)後,結果是另一個均勻多胞形英語uniform polytope,名為六維超半方形英語6-demicube超半方形系列的一員),有12個五維超半方形英語5-demicube胞和32個五維正六胞體胞。

排佈

以下列出六維超正方體的排佈矩陣英語configuration (polytope)。列和行對應頂點、邊、面、胞、四維胞和五維胞。對角線元素代表整個六維超正方體中每種元素有多少個。其他數字代表該列的元素中有多少個該行的元素。[1][2]

頂點坐標

一中心為原點、邊長為2的六維超正方體的頂點坐標為

(±1,±1,±1,±1,±1,±1)

而其內部由所有點(x0, x1, x2, x3, x4, x5)組成,其中−1 < xi < 1。

構造

六維超正方體有三個考克斯特群,一個是 There are three Coxeter groups associated with the 6-cube, one regular, with the C6 or [4,3,3,3,3] Coxeter group, and a half symmetry (D6) or [33,1,1] Coxeter group. The lowest symmetry construction is based on hyperrectangle英語hyperrectangles or proprism英語proprisms, cartesian products of lower dimensional hypercubes.

Name Coxeter英語Coxeter diagram Schläfli Symmetry英語Coxeter notation Order
Regular 6-cube node_1 4 node 3 node 3 node 3 node 3 node 
node_f1 3 node 3 node 3 node 3 node 4 node 
{4,3,3,3,3} [4,3,3,3,3] 46080
Quasiregular 6-cube node_f1 3 node 3 node 3 node split1 nodes  [3,3,3,31,1] 23040
hyperrectangle英語hyperrectangle node_1 4 node 3 node 3 node 3 node 2 node_1  {4,3,3,3}×{} [4,3,3,3,2] 7680
node_1 4 node 3 node 3 node 2 node_1 4 node  {4,3,3}×{4} [4,3,3,2,4] 3072
node_1 4 node 3 node 2 node_1 4 node 3 node  {4,3}2 [4,3,2,4,3] 2304
node_1 4 node 3 node 3 node 2 node_1 2 node_1  {4,3,3}×{}2 [4,3,3,2,2] 1536
node_1 4 node 3 node 2 node_1 4 node 2 node_1  {4,3}×{4}×{} [4,3,2,4,2] 768
node_1 4 node 2 node_1 4 node 2 node_1 4 node  {4}3 [4,2,4,2,4] 512
node_1 4 node 3 node 2 node_1 2 node_1 2 node_1  {4,3}×{}3 [4,3,2,2,2] 384
node_1 4 node 2 node_1 4 node 2 node_1 2 node_1  {4}2×{}2 [4,2,4,2,2] 256
node_1 4 node 2 node_1 2 node_1 2 node_1 2 node_1  {4}×{}4 [4,2,2,2,2] 128
node_1 2 node_1 2 node_1 2 node_1 2 node_1 2 node_1  {}6 [2,2,2,2,2] 64

Projections

orthographic projection英語orthographic projections
Coxeter plane英語Coxeter plane B6 B5 B4
Graph
Dihedral symmetry [12] [10] [8]
Coxeter plane Other B3 B2
Graph
Dihedral symmetry [2] [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]
3D Projections

6-cube 6D simple rotation through 2Pi with 6D perspective projection to 3D.

6-cube quasicrystal structure orthographically projected
to 3D using the golden ratio.

A 3D perspective projection of an hexeract undergoing a triple rotation about the X-W1, Y-W2 and Z-W3 orthogonal planes.

The 64 vertices of a 6-cube also represent a regular skew 4-polytope {4,3,4 | 4}. Its net can be seen as a 4×4×4 matrix of 64 cubes, a periodic subset of the cubic honeycomb, {4,3,4}, in 3-dimensions. It has 192 edges, and 192 square faces. Opposite faces fold together into a 4-cycle. Each fold direction adds 1 dimension, raising it into 6-space.

The 6-cube is 6th in a series of hypercube: Template:Hypercube polytopes

This polytope is one of 63 uniform 6-polytope英語uniform 6-polytopes generated from the B6 Coxeter plane英語Coxeter plane, including the regular 6-cube or 6-orthoplex英語6-orthoplex.

Template:Hexeract family

References

  1. ^ Coxeter, Regular Polytopes, sec 1.8 Configurations
  2. ^ Coxeter, Complex Regular Polytopes, p.117
  • Coxeter, H.S.M. Regular Polytopes英語Regular Polytopes (book), (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8 p. 296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n>=5)
  • Klitzing, Richard. 6D uniform polytopes (polypeta) o3o3o3o3o4x - ax. bendwavy.org. 

Template:Polytopes