跳至內容

使用者:A2569875/沙盒3

維基百科,自由的百科全書

w I k I p e D I a 

2 2 tlh a b 2 2 D e ' 2 2 H I j m e H 

j u H 
ch a t e g o r y 2 2 I n D e x 
f e a t u r e 2 2 ' a 2 2 gh I H 
D e ' 
r e ch e n t 2 2 ch o H 
r a n D o m 2 2 e n t r y 

m a l j a ' 2 2 I n S t r u ch t I o n S 
ch o m m u n I t y 2 2 p o r t a l 
ng o ch 2 2 g u I D e l I n e S 2 2 ' e j 
m u t u a l 2 2 I n n 
S o v 2 2 ' a 2 2 p a gh 2 2 n o v 
m u ' 2 2 b I D a m e H 
I r ch 2 2 D u r gh 2 2 l e 2 2 v I r a k n I l 2 2 j a w 
m a H v a D 2 2 ch o n t a ch t 
u m q u ' 2 2 gh o t 
m a H v a D 2 2 Q u tlh 

m o u n t 2 2 t o o l 2 2 b o x 

r a r 2 2 p a g e 
r e l e v a n t 2 2 p a g e 2 2 r e v I S I o n 2 2 q u n 
e D I t e D -u S e r 2 2 t a 
Q o n o S 
v a 2 2 m a I l 2 2 u S e r 
u p l o a D 2 2 t e y w I ' 
l e ' 2 2 p a g e 
p a g e 2 2 D e ' 

H o l 

__INDEX__

你好! 歡迎來到繁體中文條目天下

  

  • Mathematica 4、5
Drawing[fn_, {fx_, xmin_, xmax_}, {fy_, ymin_, ymax_}, step_] := 
 Show[Graphics[
  RasterArray[
   Table[Hue[Arg[fn]/(2 \[Pi]), 1/(1 + 0.3 Log[Abs[fn] + 1]), 
     1 - 1/(1.1 + 5 Log[Abs[fn] + 1])], {fy, ymin + 0.0012, ymax, 
     step}, {fx, xmin + 0.0012, xmax, step}]]], 
 AspectRatio -> Automatic, Axes -> True, 
 AxesStyle -> RGBColor[0, 0, 0], 
 Ticks -> {Table[{0.1 + 50 i, xmin + 50 step i, 0.01}, {i, 
     0, (xmax - xmin)/(50 step)}], 
   Table[{0.1 + 50 i, ymin + 50 step i, 0.01}, {i, 
     0, (ymax - ymin)/(50 step)}]}, 
 ImageSize -> (20 + (xmax - xmin)/step)]
  • Mathematica 6
ComplexGraph[f_, xmin_, xmax_, ymin_, ymax_, points_:100] := 
 (* f is the complex function to be graphed 
    in the region[xmin, xmax] × [ymin, ymax] .
    The parameter points controls how many points will be 
    sampled in each direction; good values are 100 - 500. *)
 RegionPlot[True, {x, xmin, xmax}, {y, ymin, ymax}, 
   ColorFunction → Function[
     {x, y}, Hue[Mod[Arg[f[x + I * y]], 2Pi]/(2Pi), 
        1/(1 + 0.3 Log[Abs[f[x + I * y]] + 1]), 
        1 - 1/(1.1 + 5Log[Abs[f[x + I * y]] + 1])]], 
   ColorFunctionScaling → False, 
   AspectRatio → Automatic, 
   PlotPoints → points]
  • Mathematica 7

Options[ComplexPlot3D] = {Mesh -> Automatic, MeshStyle -> Automatic}; ComplexPlot3D[fn_, {fx_, {remin_, remax_}, {immin_, immax_}}, points_: 100, OptionsPattern[]] := Module[{f}, f := Function[fx, fn]; Plot3D[Abs[f[x + I*y]], {x, remin, remax}, {y, immin, immax},ColorFunction -> Function[{x, y, z}, Hue[Mod[Arg[f[x + I*y]], 2 Pi]/(2 Pi), 1, 1]],ColorFunctionScaling -> False, AspectRatio -> Automatic, PlotPoints -> points, Mesh -> OptionValue[Mesh], MeshStyle -> OptionValue[MeshStyle], AxesLabel -> {Re, Im}]]; Options[ComplexPlot] = {Mesh -> None, MeshStyle -> Automatic}; ComplexPlot[fn_, {fx_, {remin_, remax_}, {immin_, immax_}}, points_: 100] := Module[{f}, f := Function[fx, fn]; RegionPlot[True, {x, remin, remax}, {y, immin, immax},ColorFunction -> Function[{x, y}, Hue[Mod[Arg[f[x + I*y]], 2 Pi]/(2 Pi), 1/(1 + 0.3 Log[Abs[f[x + I*y]] + 1]), 1 - 1/(1.1 + 5 Log[Abs[f[x + I*y]] + 1])]], ColorFunctionScaling -> False, AspectRatio -> Automatic, PlotPoints -> points, Mesh -> OptionValue[Mesh], MeshStyle -> OptionValue[MeshStyle]]]

PlotComplex[fz_, {z_, {remin_, immin_}, {remax_, immax_}}, step_] := 
 Module[{fn}, fn[gx_] := fz /. z -> gx;
  Show[Graphics[
    Raster[(*In Mathematica 7,this function,RasterArray,was obsolete,
     so it always show'RasterArray::obs:
     RasterArray is obsolete.Translating to Raster. >>' on your \
function graph but it doesn't affect the correctness of the function \
graph anymore.*)
     Table[fn[fx + I fy], {fy, 
       immin + 0.0012(*This number CAN NOT delete.*), immax, 
       step}, {fx, remin + 0.0012(*This number CAN NOT delete.*), 
       remax, step}], 
     ColorFunction -> 
      Function[{x}, 
       Hue[Mod[Arg[x], 2 \[Pi]]/(2 \[Pi]), 
        1/(1 + 0.3 Log[Abs[x] + 1]), 
        1 - 1/(1.1 + 5 Log[Abs[x] + 1])]]]], AspectRatio -> Automatic,
    Axes -> True, AxesStyle -> RGBColor[0, 0, 0], 
   Ticks -> {Table[{0.1 + 50 i, remin + 50 step i, 0.01}, {i, 
       0, (remax - remin)/(50 step)}], 
     Table[{0.1 + 50 i, immin + 50 step i, 0.01}, {i, 
       0, (immax - immin)/(50 step)}]}, 
   ImageSize -> (20 + (remax - remin)/step)]]

PlotComplex[fz_, {z_, {remin_, immin_}, {remax_, immax_}}, step_] := 
 Module[{fn}, 
  fn[gx_] := fz /. z -> gx;
  Show[Graphics[
     RasterArray[(* In Mathematica 7,this function,RasterArray, 
     was obsolete, so it always show 
    'RasterArray::obs: RasterArray is obsolete. Translating to Raster. >>'
     on your function graph but it doesn't 
     affect the correctness of the function graph anymore. *)
     Table[Hue[Mod[Arg[fn[fx + I fy]], 2 \[Pi]]/(2 \[Pi]), 
       1/(1 + 0.3 Log[Abs[fn[fx + I fy]] + 1]), 
       1 - 1/(1.1 + 5 Log[Abs[fn[fx + I fy]] + 1])],
      {fy, immin + 0.0012(* This number CAN NOT delete. *), immax, step}, 
      {fx, remin + 0.0012(* This number CAN NOT delete. *), remax, step}]]],
  AspectRatio -> Automatic, Axes -> True, 
  AxesStyle -> RGBColor[0, 0, 0], 
  Ticks -> {Table[{0.1 + 50 i, remin + 50 step i, 0.01},
                  {i, 0, (remax - remin)/(50 step)}], 
            Table[{0.1 + 50 i, immin + 50 step i, 0.01},
                  {i, 0, (immax - immin)/(50 step)}]}, 
  ImageSize -> (20 + (remax - remin)/step)]]


Options[PlotComplex] = {Mesh -> None, MeshStyle -> Automatic, 
  WorkingPrecision -> MachinePrecision}; 
PlotComplex[fz_, {z_, min_, max_}, OptionsPattern[]] := 
 Module[{fn}, fn[gx_] := fz /. z -> gx; 
  RegionPlot[x^2 y^2 > 0, {x, -2, 2}, {y, -2, 2}, 
   ColorFunction -> 
    Function[{x, y}, 
     Hue[Mod[Arg[fn[-max + max x - min x + I (-max + max y - min y)]],
        2 \[Pi]]/(2 \[Pi]), 
     1/(1 + 0.3 Log[
          Abs[fn[-max + max x - min x + I (-max + max y - min y)]] + 
           1]), 1 - 
      1/(1.1 + 
         5 Log[Abs[
             fn[-max + max x - min x + I (-max + max y - min y)]] + 
            1])]], Mesh -> OptionValue[Mesh], 
  MeshStyle -> OptionValue[MeshStyle], 
  WorkingPrecision -> OptionValue[WorkingPrecision]]];
PlotComplex[fz_, {z_, {remin_, immin_}, {remax_, immax_}}, step_] := 
 Module[{fn}, fn[gx_] := fz /. z -> gx;
  Show[Graphics[
   RasterArray[
    Table[Hue[Mod[Arg[fn[fx + I fy]], 2 \[Pi]]/(2 \[Pi]), 
      1/(1 + 0.3 Log[Abs[fn[fx + I fy]] + 1]), 
      1 - 1/(1.1 + 5 Log[Abs[fn[fx + I fy]] + 1])], {fy, 
      immin + 0.0012, immax, step}, {fx, remin + 0.0012, remax, 
      step}]]], AspectRatio -> Automatic, Axes -> True, 
  AxesStyle -> RGBColor[0, 0, 0], 
  Ticks -> {Table[{0.1 + 50 i, remin + 50 step i, 0.01}, {i, 
      0, (remax - remin)/(50 step)}], 
    Table[{0.1 + 50 i, immin + 50 step i, 0.01}, {i, 
      0, (immax - immin)/(50 step)}]}, 
  ImageSize -> (20 + (remax - remin)/step)]]