跳至內容

100000000

本頁使用了標題或全文手工轉換
維基百科,自由的百科全書
100000000
100000000
數表整數

<<   100‍  101‍  102‍  103‍  104‍  105‍  106‍  107‍  108‍  109>>
10000000 100000000 1000000000

命名
小寫一億
大寫壹億
序數詞第一億
one hundred millionth
識別
種類整數
性質
質因數分解
表示方式
100000000
算籌
希臘數字
羅馬數字
二進制101111101011110000100000000(2)
三進制20222011112012201(3)
四進制11331132010000(4)
五進制201100000000(5)
八進制575360400(8)
十二進制295A6454(12)
十六進制5F5E100(16)

100,000,000一億)是99,999,999和100,000,001之間的自然數

科學記數法寫成 108

東亞語言將「」作為一個計數單位,相當另一個計數單位「」的平方。在韓文和日文中分別為 eok ( 억/億) 和oku ()。

100,000,000是100四次方,也是10000平方

值得注意的 9 位數字 (100,000,001–999,999,999)

100,000,001 至 199,999,999

  • 100,000,007 = 最小的九位素數[1]
  • 100,005,153 = 最小的 9 位三角數和第 14,142 個三角數
  • 100,020,001 = 100012, 回文平方
  • 100,544,625 = 4653 ,最小的9位立方
  • 102,030,201 = 101012,回文平方
  • 102,334,155 = 斐波那契數
  • 102,400,000 = 405
  • 104,060,401 = 102012 = 1014 ,回文平方
  • 105,413,504 = 147
  • 107,890,609 = 韋德伯恩-埃瑟林頓數[2]
  • 111,111,111 = 循環單位, 12345678987654321 的平方根
  • 111,111,113 = 陳素數、蘇菲傑曼素數、表弟素數
  • 113,379,904 = 106482 = 4843 = 226
  • 115,856,201 = 415
  • 119,481,296 = 對數[3]
  • 121,242,121 = 110112, 回文平方
  • 123,454,321 = 111112, 回文平方
  • 123,456,789 = 最小無零基 10 泛數字
  • 125,686,521 = 112112, 回文平方
  • 126,390,032 = 補數相等的 34 珠項鍊數量(允許翻轉) [4]
  • 126,491,971 = 萊昂納多素數
  • 129,140,163 = 317
  • 129,145,076 = 利蘭數
  • 129,644,790 = 加泰羅尼亞號碼[5]
  • 130,150,588 = 33 珠二元項鍊的數量,有 2 種顏色的珠子,顏色可以互換,但不允許翻轉[6]
  • 130,691,232 = 425
  • 134,217,728 = 5123 = 89 = 227
  • 134,218,457 = 利蘭數
  • 136,048,896 = 116642 = 1084
  • 139,854,276 = 118262 ,最小無零底數 10 泛數字平方
  • 142,547,559 = 莫茨金數[7]
  • 147,008,443 = 435
  • 148,035,889 = 121672 = 5293 = 236
  • 157,115,917 – 24 個單元的平行四邊形多格骨牌的數量。 [8]
  • 157,351,936 = 125442 = 1124
  • 164,916,224 = 445
  • 165,580,141 = 斐波那契數
  • 167,444,795 = 6 進制下的循環數
  • 170,859,375 = 157
  • 171,794,492 = 具有 36 個節點的縮減樹的數量[9]
  • 177,264,449 = 利蘭數
  • 179,424,673 = 第 10,000,000 個質數
  • 184,528,125 = 455
  • 188,378,402 = 劃分{1,2,...,11}然後將每個單元(塊)劃分為子單元的方式數。 [10]
  • 190,899,322 = 貝爾數[11]
  • 191,102,976 = 138242 = 5763 = 246
  • 192,622,052 = 自由 18 格骨牌的數量
  • 199,960,004 = 邊長為 9999 的四面體的表面點數[12]

200,000,000 至 299,999,999

  • 200,000,002 = 邊長為 10000 的四面體的表面點數[12]
  • 205,962,976 = 465
  • 210,295,326 = Fine's number
  • 211,016,256 = GF(2) 上的 33 次本原多項式的數量[13]
  • 212,890,625 = 1-自守數[14]
  • 214,358,881 = 146412 = 1214 = 118
  • 222,222,222 = 純位數
  • 222,222,227 = 安全素數
  • 223,092,870 = 前九個素數的乘積,即第九個素數
  • 225,058,681 = 佩爾數[15]
  • 225,331,713 = 以 9 為基數的自描述數字
  • 229,345,007 = 475
  • 232,792,560 = 高級高合數; [16]可羅薩里過剩數[17]可被 1 到 22 所有數字整除的最小數字
  • 244,140,625 = 156252 = 1253 = 256 = 512
  • 244,389,457 = 利蘭數
  • 244,330,711 = n 使得 n | (3n + 5)
  • 245,492,244 = 補數相等的 35 珠項鍊數量(允許翻轉) [4]
  • 252,648,992 = 34 珠二元項鍊的數量,有 2 種顏色的珠子,顏色可以互換,但不允許翻轉[6]
  • 253,450,711 = 韋德伯恩-埃瑟林頓素數[2]
  • 254,803,968 = 485
  • 267,914,296 = 斐波那契數
  • 268,435,456 = 163842 = 1284 = 167 = 414 = 228
  • 268,436,240 = 利蘭數
  • 268,473,872 = 利蘭數
  • 272,400,600 = 通過 20 所需的調和級數的項數
  • 275,305,224 = 5 階幻方的數量,不包括旋轉和反射
  • 282,475,249 = 168072 = 495 = 710
  • 292,475,249 = 利蘭數

300,000,000 至 399,999,999

  • 308,915,776 = 175762 = 6763 = 266
  • 312,500,000 = 505
  • 321,534,781 = 馬爾可夫素數
  • 331,160,281 = 萊昂納多素數
  • 333,333,333 = 純位數
  • 336,849,900 = GF(2) 上的 34 次本原多項式的數量[13]
  • 345,025,251 = 515
  • 350,238,175 = 具有 37 個節點的縮減樹的數量[9]
  • 362,802,072 = 25 個單元的平行四邊形多格骨牌數量[8]
  • 364,568,617 = 利蘭數
  • 365,496,202 = n 使得 n | (3n + 5)
  • 367,567,200 = 可羅薩里過剩數Superior highly composite number英語Superior highly composite number
  • 380,204,032 = 525
  • 381,654,729 = 唯一累進可除數,同時也是無零泛泛位數
  • 387,420,489 = 196832 = 7293 = 276 = 99 = 318迭代冪次表示為 29
  • 387,426,321 = 利蘭數

400,000,000 至 499,999,999

  • 400,080,004 = 200022, 回文平方
  • 400,763,223 = 莫茨金數[7]
  • 404,090,404 = 201022, 回文平方
  • 405,071,317 = 11 + 22 + 33 + 44 + 55 + 66 + 77 + 88 + 99
  • 410,338,673 = 177
  • 418,195,493 = 535
  • 429,981,696 = 207362 = 1444 = 128 = 100,000,000 12又名gross-great-great-gross (100 12 Great-great-grosses)
  • 433,494,437 = 斐波那契素數、馬爾可夫素數
  • 442,386,619 = 交替階乘[18]
  • 444,101,658 = 具有 27 個節點的(無序、無標籤)有根修剪樹的數量[19]
  • 444,444,444 = 純位數
  • 455,052,511 = 10以下的素數個數10
  • 459,165,024 = 545
  • 467,871,369 = 14 個頂點上的無三角形圖的數量[20]
  • 477,353,376 = 補數相等的 36 珠項鍊數量(允許翻轉) [4]
  • 477,638,700 = 加泰羅尼亞號碼[5]
  • 479,001,599 = 階乘質數[21]
  • 479,001,600 = 12!
  • 481,890,304 = 219522 = 7843 = 286
  • 490,853,416 = 35 珠二元項鍊的數量,有 2 種顏色的珠子,顏色可以交換,但不允許翻轉[6]
  • 499,999,751 = 蘇菲·傑曼素數

500,000,000 至 599,999,999

  • 503,284,375 = 555
  • 522,808,225 = 228652, 回文平方
  • 535,828,591 = 萊昂納多素數
  • 536,870,911 = 第三個具有質數指數的複合梅森數
  • 536,870,912 = 229
  • 536,871,753 = 利蘭數
  • 542,474,231 = k 使得前 k 個素數的平方和可被 k 整除。 [22]
  • 543,339,720 = 佩爾號[15]
  • 550,731,776 = 565
  • 554,999,445 = 以 10 為基數表示數字長度 9 的Kaprekar 常數
  • 555,555,555 = 純位數
  • 574,304,985 = 19 + 29 + 39 + 49 + 59 + 69 + 79 + 89 + 99[23]
  • 575,023,344 = xx 在 x=1 處的 14 階導數[24]
  • 594,823,321 = 243892 = 8413 = 296
  • 596,572,387 = 韋德本-埃瑟林頓素數[2]

600,000,000 至 699,999,999

  • 601,692,057 = 575
  • 612,220,032 = 187
  • 617,323,716 = 248462, 回文平方
  • 635,318,657 = 歐拉知道的兩個四次方以兩種不同方式相加的最小數 ( 594 + 1584 = 1334 + 1344 )。
  • 644,972,544 = 8643, 3-平滑數
  • 656,356,768 = 585
  • 666,666,666 = 純位數
  • 670,617,279 = Collatz 猜想的 109以下的最高停止時間整數

700,000,000 至 799,999,999

  • 701,408,733 = 斐波那契數
  • 714,924,299 = 595
  • 715,497,037 = 具有 38 個節點的縮減樹的數量[9]
  • 715,827,883 =瓦格斯塔夫素數[25]雅各布斯塔爾素數
  • 725,594,112 = GF(2) 上的 36 次本原多項式的數量[13]
  • 729,000,000 = 270002 = 9003 = 306
  • 742,624,232 = 免費 19 聯骨牌數量
  • 774,840,978 = 利蘭數
  • 777,600,000 = 605
  • 777,777,777 = 純位數
  • 778,483,932 = Fine Number
  • 780,291,637 = 馬爾可夫素數
  • 787,109,376 = 1-自守數[14]

800,000,000 至 899,999,999

  • 815,730,721 = 138
  • 815,730,721 = 1694
  • 835,210,000 = 1704
  • 837,759,792 = 26 個單元的平行四邊形多骨牌數量。 [8]
  • 844,596,301 = 615
  • 855,036,081 = 1714
  • 875,213,056 = 1724
  • 887,503,681 = 316
  • 888,888,888 = 純位數
  • 893,554,688 = 2-自守數[26]
  • 893,871,739 = 197
  • 895,745,041 = 1734

900,000,000 至 999,999,999

  • 906,150,257 = 波利亞猜想的最小反例
  • 916,132,832 = 625
  • 923,187,456 = 303842 ,最大的無零泛數字平方
  • 928,772,650 = 補數相等的 37 珠項鍊數量(允許翻轉) [4]
  • 929,275,200 = GF(2) 上的 35 次本原多項式的數量[13]
  • 942,060,249 = 306932,回文平方
  • 987,654,321 = 最大的無零泛數字
  • 992,436,543 = 635
  • 997,002,999 = 9993 ,最大的9位立方
  • 999,950,884 = 316222 ,最大的九位數平方
  • 999,961,560 = 最大的 9 位數三角數和第 44,720 個三角數
  • 999,999,937 = 最大的 9 位質數
  • 999,999,999 = 純位數

參考

  1. ^ Sloane, N.J.A. (編). Sequence A003617 (Smallest n-digit prime). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. [7 September 2017]. 
  2. ^ 2.0 2.1 2.2 Sloane, N.J.A. (編). Sequence A001190 (Wedderburn-Etherington numbers). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. [2016-06-17]. Sloane, N. J. A. (ed.). "Sequence A001190 (Wedderburn-Etherington numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  3. ^ Sloane, N.J.A. (編). Sequence A002104 (Logarithmic numbers). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  4. ^ 4.0 4.1 4.2 4.3 Sloane, N.J.A. (編). Sequence A000011 (Number of n-bead necklaces (turning over is allowed) where complements are equivalent). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  5. ^ 5.0 5.1 Sloane, N.J.A. (編). Sequence A000108 (Catalan numbers). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. [2016-06-17]. Sloane, N. J. A. (ed.). "Sequence A000108 (Catalan numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  6. ^ 6.0 6.1 6.2 Sloane, N.J.A. (編). Sequence A000013 (Definition (1): Number of n-bead binary necklaces with beads of 2 colors where the colors may be swapped but turning over is not allowed). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  7. ^ 7.0 7.1 Sloane, N.J.A. (編). Sequence A001006 (Motzkin numbers). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. [2016-06-17]. Sloane, N. J. A. (ed.). "Sequence A001006 (Motzkin numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  8. ^ 8.0 8.1 8.2 Sloane, N.J.A. (編). Sequence A006958 (Number of parallelogram polyominoes with n cells (also called staircase polyominoes, although that term is overused)). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  9. ^ 9.0 9.1 9.2 Sloane, N.J.A. (編). Sequence A000014 (Number of series-reduced trees with n nodes). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  10. ^ Sloane, N.J.A. (編). Sequence A000258 (Expansion of e.g.f. exp(exp(exp(x)-1)-1)). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  11. ^ Sloane's A000110 : Bell or exponential numbers. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. [2016-06-17]. (原始內容存檔於2019-08-30). 
  12. ^ 12.0 12.1 Sloane, N.J.A. (編). Sequence A005893 (Number of points on surface of tetrahedron). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  13. ^ 13.0 13.1 13.2 13.3 Sloane, N.J.A. (編). Sequence A011260 (Number of primitive polynomials of degree n over GF(2)). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  14. ^ 14.0 14.1 Sloane, N.J.A. (編). Sequence A003226 (Automorphic numbers). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Sloane, N. J. A. (ed.). "Sequence A003226 (Automorphic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2019-04-06.
  15. ^ 15.0 15.1 Sloane, N.J.A. (編). Sequence A000129 (Pell numbers). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. [2016-06-17]. Sloane, N. J. A. (ed.). "Sequence A000129 (Pell numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  16. ^ Sloane's A002201 : Superior highly composite numbers. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. [2016-06-17]. (原始內容存檔於2010-12-29). 
  17. ^ Sloane's A004490 : Colossally abundant numbers. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. [2016-06-17]. (原始內容存檔於2012-05-25). 
  18. ^ Sloane's A005165 : Alternating factorials. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. [2016-06-17]. (原始內容存檔於2012-10-09). 
  19. ^ Sloane, N.J.A. (編). Sequence A002955 (Number of (unordered, unlabeled) rooted trimmed trees with n nodes). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  20. ^ Sloane, N.J.A. (編). Sequence A006785 (Number of triangle-free graphs on n vertices). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  21. ^ Sloane's A088054 : Factorial primes. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. [2016-06-17]. (原始內容存檔於2020-10-03). 
  22. ^ Sloane, N.J.A. (編). Sequence A111441 (Numbers k such that the sum of the squares of the first k primes is divisible by k). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. [2022-06-02]. 
  23. ^ Sloane, N.J.A. (編). Sequence A031971. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  24. ^ Sloane, N.J.A. (編). Sequence A005727. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  25. ^ Sloane's A000979 : Wagstaff primes. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. [2016-06-17]. (原始內容存檔於2010-11-25). 
  26. ^ Sloane, N.J.A. (編). Sequence A030984 (2-automorphic numbers). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. [2021-09-01].