阿列夫數
此條目或其章節極大或完全地依賴於某個單一的來源。 (2014年7月15日) |
各式各樣的數 |
基本 |
延伸 |
其他 |
在集合論中,阿列夫數或艾禮富數是一連串超窮基數。其標記符號為 ℵ (由希伯來字母א(aleph)演變而來)加角標表示。
可數集(包括自然數)的勢標記為,下一個較大的勢為,再下一個是,以此類推。一直繼續下來,便可以對任一序數 α 定義一個基數。
這一概念來自於康托爾,他定義了勢,並認識到無窮集合是可以有不同的勢的。
阿列夫數與一般在代數與微積分中出現的無限 (∞) 不同。阿列夫數用來衡量集合的大小,而無限只是在極限的寫法中出現,或是定義成擴展的實數軸上的端點。某些阿列夫數會大於另一些阿列夫數,而無限只是無限而已。
構造性定義
阿列夫數的直觀定義並沒有解釋什麽叫「下一個較大的勢」,也沒有證明是否存在「下一個較大的勢」。即便承認對任意的基數都存在更大的基數,是否存在「下一個較大的勢」使得這個基數和「下一個較大的基數」之間不再有其他的基數仍然是個問題。下面的構造型定義解決這個問題:[1]:28
- ℵ0定義從前,它是一個良序集ℕ的序數;
- 考慮良序集[1]:25按照某種同構關係[注 1]劃出的等價類[1]:18[注 2];
- 如上定義的等價類有一個特點:可比較[1]:25,
- 設ℵa已定義且是一良序集的基數,考慮:
阿列夫1
是所有可數序數集合的勢,稱為 ω1或有時為Ω。這個ω1本身是一個比所有可數序數更大的序數,因此它為一個不可數集。
數「阿列夫」
在中國大陸,實數集的基數常被記爲𝖈或 ℵ,卽 ℵ := ℶ₁,這樣連續統假設就常常被表述爲 ℵ = ℵ₁.閲讀相關讀物時應避免混淆。人們在學數學分析(微積分)時常常以爲自己時常遇到的是阿列夫數,事實上他們遇到的是 「ℵ」或「𝖈」,卽角標爲1的 ℶ 數。除非討論集合論,否則阿列夫數將是最不常用的基數之一。