配位場理論
配位場理論(英語:Ligand field theory,首字母縮略字:LFT)是晶體場理論和分子軌道理論的結合,用以解釋配位化合物中的成鍵情況。[1] 與晶體場理論不同的是,配位場理論考慮配體與中心原子之間一定程度的共價鍵合,可以解釋晶體場理論無法解釋的光譜化學序列等現象。一般LFT選取的模型都為八面體構型,即六個配體沿坐標軸正負指向中心原子,以方便理解。[2]
成鍵
σ配位鍵
八面體配合物中,六個配體從x、y和z正負軸指向中心原子,因此凡是有σ對稱性的外層軌道都可能與配體孤對電子的外層σ軌道重疊形成σ鍵。s軌道、、、和d軌道中的、六個軌道具有σ對稱性,可以與六個配體的σ軌道形成六個σ成鍵軌道和六個σ*反鍵軌道。、和軌道(軌道)能級不變,成為非鍵軌道。
6個成鍵軌道分別記為、和軌道,反鍵軌道則與其對應,記為、和。一般配體的電負性較大,6個σ軌道能級較中心原子低,配體提供的孤對電子主要進入成鍵軌道中,而中心原子的d電子則主要進入非鍵和反鍵軌道。由於含有較多的d軌道成分,類似於晶體場理論中的軌道,因此,和軌道之間的能級差便成為分裂能,用配位場理論也得到了與晶體場理論相似的結果。
π配位鍵
當中心原子和配體形成π配位鍵時,根據配位體性質的不同,有兩種不同的π相互作用,會導致分裂能發生較大的變化。分別為:與配體未參與σ成鍵的p軌道成鍵,以及與配體的π或π*分子軌道結合。
中心原子含有π對稱性的軌道包括、和,雖然它們不能與配體σ軌道組合,但是可以和配體π對稱性的軌道組成分子軌道,形成π配位鍵。在單純形成σ配鍵時,這些軌道只是非鍵軌道,能級變化很小。
當充滿電子的配體p軌道和金屬原子成鍵,例如F−、Cl−、OH−等配體與金屬原子形成的配合物,配體的電子填充成鍵π分子軌道,中心原子的d()軌道電子進入反鍵π*軌道,能量升高,是配合物的HOMO軌道。與單純包含σ配鍵的配合物相比,Δ值變小,配合物易形成高自旋型,電子從配體流向中心原子,形成「正常的」π配鍵。
相反,當配體有低能級的空π*軌道和金屬原子成鍵,例如CO、CN−、PR3等,原來的非鍵軌道變為π成鍵軌道,而依然是反鍵σ*軌道。相比之下,Δ值增大,電子進入成鍵π分子軌道,看上去電子是從中心原子流向配體,因此稱之為反饋π鍵。
晶體場理論只從靜電作用考慮,認為軌道直接指向配體,而則插入配體間的空擋中,得出軌道能級高於軌道的結論。而配位場理論(分子軌道理論)則以中心原子和配體原子軌道疊加來考慮:
- 在純σ配合物中,是σ*反鍵軌道,是非鍵軌道;
- 對於π軌道充滿電子形成的配合物,保持σ*反鍵軌道,變為π*反鍵軌道,Δ變小;
- 對於有空π*軌道的配體形成的配合物,仍保持σ*反鍵軌道,變為π成鍵軌道,Δ值增大。因而從配位場理論也可得到類似的結論。
高和低自旋及光譜化學序列
配體的電子充填六個成鍵軌道,金屬的d電子進入非鍵軌道或反鍵軌道中,非鍵與反鍵之間的能級差稱為分裂能Δo(o代表八面體),受以下兩個因素影響:
- 配體與中心原子之間的σ配鍵強弱
- 若配體為強的σ電子給予體,則Δ值較大。
- 配體與中心原子之間的π相互作用
- 若配體為強的π電子接受體,可形成強的反饋π鍵,則Δ值增大。
電子組態為-的金屬配合物自旋態會受分裂能大小影響。電子填充到非鍵和反鍵軌道中時,若電子優先成對排到非鍵軌道中,則稱為低自旋態;若電子優先進入反鍵軌道,而後成對,則稱為高自旋態。較大的分裂能常導致低自旋態,而較小的分裂能則常導致高自旋態。具體請參見晶體場理論#高自旋和低自旋。
光譜化學序列由光譜數據衍生出,根據分裂能Δ的大小來衡量配體的「強度」。由配位場理論可知,弱場配體都是π電子給予體(如I−),強場配體都是π電子接受體(如CN−和CO),而配體如H2O或NH3則處於中間,π相互作用很弱。
I− < Br− < S2− < SCN− < Cl− < NO3− < N3− < F− < OH− < C2O42− < H2O < NCS− < CH3CN < py (吡啶) < NH3 < en (乙二胺) < bipy (2,2'-聯吡啶) < phen (1,10-鄰菲囉啉) < NO2− < PH3 < CN− < CO
歷史
配位場理論是20世紀三四十年代時,在晶體場理論的基礎上,同時結合分子軌道理論建立起來的。晶體場理論假設配位鍵由中心原子與配體之間的靜電吸引組成,忽視其中的共價性,因此無法解釋光譜化學序列和中性配體(如N2和CO)形成的配合物。配位場理論則彌補了這些不足。
參考資料
- ^ Schläfer, H. L.; Gliemann, G. Basic Principles of Ligand Field Theory Wiley Interscience: New York; 1969
- ^ G. L. Miessler and D. A. Tarr 「Inorganic Chemistry」 3rd Ed, Pearson/Prentice Hall publisher, ISBN 0-13-035471-6.
參見
外部連結
- Crystal-field Theory, Tight-binding Method, and Jahn-Teller Effect (頁面存檔備份,存於網際網路檔案館) in E. Pavarini, E. Koch, F. Anders, and M. Jarrell (eds.): Correlated Electrons: From Models to Materials, Jülich 2012, ISBN 978-3-89336-796-2