柱狀均勻多面體
在幾何學中,柱狀均勻多面體(Prismatic uniform polyhedron)是指屬於柱狀形的均勻多面體,其通常具有二面體群對稱性。其包括了角柱和反角柱,同時柱狀均勻多面體也都是擬柱體。
性質
柱狀均勻多面體具有點可遞的特性[1]。其對稱性通常與其底面相關,例如五角星反角柱的底面是一個五角星,因此其具有D5的二面體群對稱性[2]。
列表
對稱群 | 凸 | 星形 | ||||||
---|---|---|---|---|---|---|---|---|
d2d [2+,2] (2*2) |
3.3.3 | |||||||
d3h [2,3] (*223) |
3.4.4 | |||||||
d3d [2+,3] (2*3) |
3.3.3.3 | |||||||
d4h [2,4] (*224) |
4.4.4 | |||||||
d4d [2+,4] (2*4) |
3.3.3.4 | |||||||
d5h [2,5] (*225) |
4.4.5 |
4.4.5/2 |
3.3.3.5/2 | |||||
d5d [2+,5] (2*5) |
3.3.3.5 |
3.3.3.5/3 | ||||||
d6h [2,6] (*226) |
4.4.6 | |||||||
d6d [2+,6] (2*6) |
3.3.3.6 | |||||||
d7h [2,7] (*227) |
4.4.7 |
4.4.7/2 |
4.4.7/3 |
3.3.3.7/2 |
3.3.3.7/4 | |||
d7d [2+,7] (2*7) |
3.3.3.7 |
3.3.3.7/3 | ||||||
d8h [2,8] (*228) |
4.4.8 |
4.4.8/3 | ||||||
d8d [2+,8] (2*8) |
3.3.3.8 |
3.3.3.8/3 |
3.3.3.8/5 | |||||
d9h [2,9] (*229) |
4.4.9 |
4.4.9/2 |
4.4.9/4 |
3.3.3.9/2 |
3.3.3.9/4 | |||
d9d [2+,9] (2*9) |
3.3.3.9 |
3.3.3.9/5 | ||||||
d10h [2,10] (*2.2.10) |
4.4.10 |
4.4.10/3 | ||||||
d10d [2+,10] (2*10) |
3.3.3.10 |
3.3.3.10/3 | ||||||
d11h [2,11] (*2.2.11) |
4.4.11 |
4.4.11/2 |
4.4.11/3 |
4.4.11/4 |
4.4.11/5 |
3.3.3.11/2 |
3.3.3.11/4 |
3.3.3.11/6 |
d11d [2+,11] (2*11) |
3.3.3.11 |
3.3.3.11/3 |
3.3.3.11/5 |
3.3.3.11/7 | ||||
d12h [2,12] (*2.2.12) |
4.4.12 |
4.4.12/5 | ||||||
d12d [2+,12] (2*12) |
3.3.3.12 |
3.3.3.12/5 |
3.3.3.12/7 | |||||
... |
參見
參考文獻
- ^ Coxeter, Harold Scott MacDonald; Longuet-Higgins, M. S.; Miller, J. C. P. Uniform polyhedra. Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences (The Royal Society). 1954, 246 (916): 401–450. ISSN 0080-4614. JSTOR 91532. MR 0062446. doi:10.1098/rsta.1954.0003.
- ^ Kaleido Data: Uniform Polyhedron #4. (原始內容存檔於2005-03-13).