跳至內容

全機率定理

本頁使用了標題或全文手工轉換
維基百科,自由的百科全書

全機率定理(Law of total probability),假設{ Bn : n = 1, 2, 3, ... } 是一個概率空間的有限或者可數無限的分割(既 Bn為一完備事件組),且每個集合Bn是一個可測集合,則對任意事件A全概率公式

又因為

此處Pr(A | B)是B發生後A條件概率,所以全概率公式又可寫作:

全概率公式將對一複雜事件A的概率求解問題轉化為了在不同情況或不同原因 Bn下發生的簡單事件的概率的求和問題。

條件概率的期望值

在離散情況下,上述公式等於下面這個公式。但後者在連續情況下仍然成立:

此處N是任意隨機變量

這個公式還可以表達為:

"A先驗概率等於A後驗概率的事前期望值

參見