跳转到内容

菱形镶嵌

本页使用了标题或全文手工转换
维基百科,自由的百科全书
菱形镶嵌
菱形镶嵌
欧几里得平面
类别拉夫斯镶嵌(Laves tiling)
平面镶嵌
对偶多面体截半六边形镶嵌
数学表示法
考克斯特符号
英语Coxeter-Dynkin diagram
node 3 node_f1 6 node 
node_h1 3 node 6 node_f1 
施莱夫利符号dr{6,3}
组成与布局
面的种类60°–120°菱形
面的布局
英语Face configuration
V3.6.3.6
对称性
对称群p6m, [6,3], *632
p3m1, [3[3]], *333
旋转对称群
英语Rotation_groups
p6, [6,3]+, (632)
p3, [3[3]]+, (333)
特性
边可递面可递
图像

截半六边形镶嵌
对偶多面体

几何学中,菱形镶嵌(英语:rhombille tiling[1]又称为三菱形镶嵌(英语:Order-6-3 quasiregular rhombic tiling)是一种由60° - 120°的菱形组成的平面镶嵌,菱形具有这种形状有时也被称为钻石。平面菱形镶嵌一共有二种顶点,其中一种是三个菱形120°度角的顶点的公共顶点,另外一个是60°度角的顶点的公共顶点。

菱形镶嵌是19世纪时英国人流行的装饰[2],亦可以称为:歪斜的方块弄倒的积木翻倒的方块(英语:tumbling blocks[3]可逆立方体(英语:reversible cubes)或骰子网格(英语:dice lattice)。

性质

菱形镶嵌可以视为六边形镶嵌以六边形的形心做为三个菱形的公共顶点所做的切割,每个菱形对角线比是。其为截半六边形镶嵌或戈薇网格的对偶,由于其为半正镶嵌的对偶,因此被归类为拉夫斯镶嵌(英语:Laves tiling),是11种半正镶嵌对偶之一,在一面体镶嵌记号中以[3.6.3.6]表示[4]

它是56个可以由四边形完成密铺得等面镶嵌之一[5],并且是8中具有边位于同一条直线上的对称镶嵌之一[6]

菱形镶嵌覆盖在它的对偶截半六边形镶嵌上。

菱形镶嵌可以嵌入成三维整数方格英语integer lattice的子集,所组成的点(x,y,z)满足|x + y + z| ≤ 1,在这种状态下,两个顶点相邻当且仅当相应网格点仅距离彼此单位长,并且使得在镶嵌中的任意两个顶点之间的最短路径的边数是一样的相应网格点之间的曼哈顿距离。因此,菱形镶嵌可以作为无限单位距离图英语unit distance graph和局部立方体的一个示例[7]

艺术和装饰

菱形镶嵌可以被解释为一组两种不同方式的立方体的等角投影视图,形成一个与可逆图相关的内克尔立方体。在这种情况下它被称为“可逆立方体”的错觉[8],其外观看似两种方向共存的立方体,因为若一个形象可以解释成不止一种样子,我们的大脑就会使这形象在这些不同的解释之间来回摆动[9]

M. C. 艾雪的作品《变形I》、《变形II》和《变形III》[10]中艾雪采用这种可解释为两种不同方向立方体的密铺作为二维和三维形式之间变形的一种方式[11]。在他的其他作品中,如《Cycle》(1938)中,艾雪使用了与二维和三维立体镶嵌之间的张力:在他画的建筑中,同时具有较大的立方体块作为建筑元素(画等距)和楼上露台菱形镶嵌的瓷砖。从露台立方体走过去下楼梯的一个人随著高度的下降,逐渐变成二维的图形,又逐渐转化为立方体成为建筑物的一部分,最后变成露台地板瓷砖的菱形镶嵌,这种牵扯到维度的变化就是他的画风[12][13]

提洛的地板平铺是菱形镶嵌
锡耶纳大教堂地板的菱形镶嵌图案

菱形镶嵌也可一作为拼花的设计[14]、地面或墙面贴砖,有时会在菱形上做些形状的变化[15]

相关多面体与镶嵌

菱形镶嵌是半正镶嵌对偶家族的一部分,对应的对偶为截半六边形镶嵌

正三角形镶嵌家族的半正镶嵌
对称性: [6,3], (*632) [6,3]+, (632) [1+,6,3], (*333) [6,3+], (3*3)
node_1 6 node 3 node  node_1 6 node_1 3 node  node 6 node_1 3 node  node 6 node_1 3 node_1  node 6 node 3 node_1  node_1 6 node 3 node_1  node_1 6 node_1 3 node_1  node_h 6 node_h 3 node_h  node_h 6 node 3 node  node 6 node_h 3 node_h 
{6,3} t0,1{6,3} t1{6,3} t1,2{6,3} t2{6,3} t0,2{6,3} t0,1,2{6,3} s{6,3} h{6,3} h1,2{6,3}
半正对偶
node_f1 6 node 3 node  node_f1 6 node_f1 3 node  node 6 node_f1 3 node  node 6 node_f1 3 node_f1  node 6 node 3 node_f1  node_f1 6 node 3 node_f1  node_f1 6 node_f1 3 node_f1  node_fh 6 node_fh 3 node_fh  node_fh 6 node 3 node  node 6 node_fh 3 node_fh 
V6.6.6 V3.12.12 V3.6.3.6 V6.6.6 V3.3.3.3.3.3 V3.4.12.4 V.4.6.12 V3.3.3.3.6 V3.3.3.3.3.3

菱形镶嵌是考克斯特群为[n,3]的菱形多面体与镶嵌系列的一份子,该系列始于立方体,它可以被看作是一个菱形六面体,其中菱形是从正方形开始。在这个序列中的第n个元素具有V3.n.3.n.的一个面布局。

拟正多面体和镶嵌系列:3.n.3.n
对称群
*n32
[n,3]
球面 欧氏镶嵌 紧凑型双曲镶嵌 仿紧型镶嵌 非紧型镶嵌
*332
[3,3]
Td
*432
[4,3]
Oh
*532
[5,3]
Ih
*632
[6,3]
p6m
*732
[7,3]
*832
[8,3]...
*∞32
[∞,3]
 
[iπ/λ,3]
拟正顶点
布局

3.3.3.3

3.4.3.4

3.5.3.5

3.6.3.6

3.7.3.7

3.8.3.8

3.∞.3.∞

3.∞.3.∞
考克斯特纪号 node 3 node_1 3 node  node 4 node_1 3 node  node 5 node_1 3 node  node 6 node_1 3 node  node 7 node_1 3 node  node 8 node_1 3 node  node infin node_1 3 node  node ultra node_1 3 node 
对偶
(菱形)
顶点
布局

V3.3.3.3

V3.4.3.4

V3.5.3.5

V3.6.3.6

V3.7.3.7

V3.8.3.8

V3.∞.3.∞
考克斯特纪号 node 3 node_f1 3 node  node 4 node_f1 3 node  node 5 node_f1 3 node  node 6 node_f1 3 node  node 7 node_f1 3 node  node 8 node_f1 3 node  node infin node_f1 3 node  node ultra node_f1 3 node 

参考文献

  1. ^ Conway, John; Burgiel, Heidi; Goodman-Strass, Chaim, Chapter 21: Naming Archimedean and Catalan polyhedra and tilings, The Symmetries of Things, AK Peters: 288, 2008, ISBN 978-1-56881-220-5 .
  2. ^ 陈非 <<新周刊>>第381期 互联网档案馆存档,存档日期2014-07-14. 翻滚块(菱形镶嵌)第三节 第六段 [2014-6-9]
  3. ^ Smith, Barbara, Tumbling Blocks: New Quilts from an Old Favorite, Collector Books, 2002, ISBN 9781574327892 .
  4. ^ Grünbaum, Branko; Shephard, G. C., Tilings and Patterns, New York: W. H. Freeman, 1987, ISBN 0-7167-1193-1 . Section 2.7, Tilings with regular vertices, pp. 95–98.
  5. ^ Grünbaum & Shephard (1987), Figure 9.1.2, Tiling P4-42, p. 477.
  6. ^ Kirby, Matthew; Umble, Ronald, Edge tessellations and stamp folding puzzles, Mathematics Magazine, 2011, 84 (4): 283–289, MR 2843659, arXiv:0908.3257可免费查阅, doi:10.4169/math.mag.84.4.283 .
  7. ^ Deza, Michel; Grishukhin, Viatcheslav; Shtogrin, Mikhail, Scale-isometric polytopal graphs in hypercubes and cubic lattices: Polytopes in hypercubes and Zn, London: Imperial College Press: 150, 2004 [2014-06-08], ISBN 1-86094-421-3, MR 2051396, doi:10.1142/9781860945489, (原始内容存档于2014-07-22) .
  8. ^ Warren, Howard Crosby, Human psychology, Houghton Mifflin: 262, 1919 [2014-06-09], (原始内容存档于2014-07-28) .
  9. ^ Theoni Pappas, 陈以鸿译. 《數學放輕鬆》. 新北市: 世茂出版社. 2004: P.215. ISBN 9577766110. 
  10. ^ 1994 M. C. Escher《Metamorphosis III》 CAordon Art-Baarn-Holland
  11. ^ Kaplan, Craig S., Metamorphosis in Escher's art, Bridges 2008: Mathematical Connections in Art, Music and Science (PDF): 39–46, 2008 [2014-06-09], (原始内容 (PDF)存档于2014-12-22) .
  12. ^ Escher, Maurits Cornelis, M.C. Escher, the Graphic Work, Taschen: 29–30, 2001 [2014-06-09], ISBN 9783822858646, (原始内容存档于2014-07-15) .
  13. ^ De May, Jos, Painting after M. C. Escher, Schattschneider, D.; Emmer, M. (编), M. C. Escher's Legacy: A Centennial Celebration, Springer: 130–141, 2003 .
  14. ^ Schleining, Lon; O'Rourke, Randy, Tricking the eyes with tumbling blocks, Treasure Chests: The Legacy of Extraordinary Boxes, Taunton Press: 58, 2003 [2014-06-09], ISBN 9781561586516, (原始内容存档于2017-03-20) .
  15. ^ Tessellation Tango页面存档备份,存于互联网档案馆), The Mathematical Tourist, Drexel University, retrieved 2012-05-23.