此条目需要
精通或熟悉相关主题的编者 参与及协助编辑。
(2016年12月12日 ) 请邀请 适合的人士改善本条目 。更多的细节与详情请参见讨论页 。
维拉宿代数 (Virasoro algebra)是单位圆 上微分算子 所组成的李代数 的中心拓展 ,在复数域上的无限维李代数。这与仿射Kac-Moody代数 关系密切(参看Sugawara构造 )。Virasoro 代数的幺正表示 描绘两维共形场论 的对称性 。
定义
维拉宿代数 是一李代数 ,生成元是
L
n
:
n
∈
Z
{\displaystyle {L_{n}:n\in \mathbb {Z} }}
,
c ,
符合:
[
L
m
,
L
n
]
=
(
m
−
n
)
L
m
+
n
+
δ
m
+
n
(
m
3
−
m
)
12
c
{\displaystyle [L_{m},L_{n}]=(m-n)L_{m+n}+\delta _{m+n}{\frac {(m^{3}-m)}{12}}c}
推导
维拉宿代数可以被认为是以下Witt 代数 的 中心拓展 :
[
l
m
,
l
n
]
=
(
m
−
n
)
l
m
+
n
{\displaystyle [l_{m},l_{n}]=(m-n)l_{m+n}}
,
[
l
¯
m
,
l
¯
n
]
=
(
m
−
n
)
l
¯
m
+
n
{\displaystyle [{\bar {l}}_{m},{\bar {l}}_{n}]=(m-n){\bar {l}}_{m+n}}
,
[
l
m
,
l
¯
n
]
=
0
{\displaystyle [l_{m},{\bar {l}}_{n}]=0}
.
对于一李代数
g
{\displaystyle \ {\bf {g}}}
, 其在复数域
C
{\displaystyle \ {\bf {C}}}
的 central extension
g
~
{\displaystyle \ {\tilde {g}}}
满足下列交换子 :
[
x
~
,
y
~
]
g
~
=
[
x
,
y
]
g
+
c
p
(
x
,
y
)
,
{\displaystyle [{\tilde {x}},{\tilde {y}}]_{\tilde {g}}=[x,y]_{g}+cp(x,y),}
[
x
~
,
c
]
g
~
=
0
,
{\displaystyle [{\tilde {x}},c]_{\tilde {g}}=0,}
[
c
,
c
]
g
~
=
0
,
{\displaystyle [c,c]_{\tilde {g}}=0,}
其中
x
~
,
y
~
∈
g
~
,
x
,
y
∈
g
,
c
∈
C
,
p
:
g
~
×
g
~
→
C
{\displaystyle \ {\tilde {x}},{\tilde {y}}\in {\tilde {g}},x,y\in g,c\in {\bf {C}},p:{\tilde {g}}\times {\tilde {g}}\rightarrow {\bf {C}}}
. 由此定义, 维拉宿代数的生成元满足以下交换子
[
L
m
,
L
n
]
=
(
m
−
n
)
L
m
+
n
+
c
p
(
m
,
n
)
{\displaystyle [L_{m},L_{n}]=(m-n)L_{m+n}+cp(m,n)}
.
p
(
m
,
n
)
{\displaystyle p(m,n)}
可以由以下条件决定:
交换子必须是反对易的, 所以
p
(
m
,
n
)
=
−
p
(
n
,
m
)
{\displaystyle p(m,n)=-p(n,m)}
可以观察到, 如果定义以下生成元
L
^
n
=
L
n
+
c
p
(
n
,
0
)
n
,
n
≠
0
{\displaystyle {\hat {L}}_{n}=L_{n}+{\frac {cp(n,0)}{n}},n\neq 0}
L
^
0
=
L
0
+
c
p
(
1
,
−
1
)
2
,
{\displaystyle {\hat {L}}_{0}=L_{0}+{\frac {cp(1,-1)}{2}},}
它们满足
[
L
^
n
,
L
^
0
]
=
n
L
n
+
c
p
(
n
,
0
)
=
n
L
^
n
,
{\displaystyle [{\hat {L}}_{n},{\hat {L}}_{0}]=nL_{n}+cp(n,0)=n{\hat {L}}_{n},}
[
L
^
1
,
L
^
−
1
]
=
2
L
0
+
c
p
(
1
,
−
1
)
=
2
L
^
0
.
{\displaystyle [{\hat {L}}_{1},{\hat {L}}_{-1}]=2L_{0}+cp(1,-1)=2{\hat {L}}_{0}.}
比较函数
p
(
m
,
n
)
{\displaystyle p(m,n)}
的定义可以得知,
p
(
1
,
−
1
)
{\displaystyle p(1,-1)}
与
p
(
n
,
0
)
{\displaystyle p(n,0)}
总是可以被设为0.
0
=
[
[
L
m
,
L
n
]
,
L
0
]
+
[
[
L
n
,
L
0
]
,
L
m
]
+
[
[
L
0
,
L
m
]
,
L
n
]
{\displaystyle \ 0=[[L_{m},L_{n}],L_{0}]+[[L_{n},L_{0}],L_{m}]+[[L_{0},L_{m}],L_{n}]}
=
(
m
−
n
)
c
p
(
m
+
n
,
0
)
+
n
c
p
(
n
,
m
)
−
m
c
p
(
m
,
n
)
{\displaystyle \ =(m-n)cp(m+n,0)+ncp(n,m)-mcp(m,n)}
=
(
m
+
n
)
p
(
n
,
m
)
{\displaystyle \ =(m+n)p(n,m)}
所以
p
(
n
,
m
)
=
0
{\displaystyle p(n,m)=0}
如果
n
≠
−
m
{\displaystyle n\neq -m}
, 即唯一的非零 central extension为
p
(
n
,
−
n
)
{\displaystyle p(n,-n)}
且
|
n
|
>=
2
{\displaystyle |n|>=2}
.
0
=
[
[
L
−
n
+
1
,
L
n
]
,
L
−
1
]
+
[
[
L
n
,
L
−
1
]
,
L
−
n
+
1
]
+
[
[
L
−
1
,
L
−
n
+
1
]
,
L
n
]
{\displaystyle \ 0=[[L_{-n+1},L_{n}],L_{-1}]+[[L_{n},L_{-1}],L_{-n+1}]+[[L_{-1},L_{-n+1}],L_{n}]}
=
(
−
2
n
+
1
)
c
p
(
1
,
−
1
)
+
(
n
+
1
)
c
p
(
n
−
1
,
−
n
+
1
)
+
(
n
−
1
)
c
p
(
−
n
,
n
)
{\displaystyle \ =(-2n+1)cp(1,-1)+(n+1)cp(n-1,-n+1)+(n-1)cp(-n,n)}
可知
p
(
m
,
n
)
{\displaystyle p(m,n)}
满足以下递推公式
p
(
n
,
−
n
)
=
n
+
1
n
−
2
p
(
n
−
1
,
−
n
+
1
)
{\displaystyle \ p(n,-n)={\frac {n+1}{n-2}}p(n-1,-n+1)}
=
n
+
1
n
−
2
n
n
−
3
p
(
n
−
2
,
−
n
+
2
)
{\displaystyle \ ={\frac {n+1}{n-2}}{\frac {n}{n-3}}p(n-2,-n+2)}
=...
=
n
+
1
n
−
2
n
n
−
3
.
.
.
4
1
p
(
2
,
−
2
)
{\displaystyle \ ={\frac {n+1}{n-2}}{\frac {n}{n-3}}...{\frac {4}{1}}p(2,-2)}
=
(
n
+
1
3
)
1
2
{\displaystyle \ ={n+1 \choose 3}{\frac {1}{2}}}
=
1
12
(
n
+
1
)
n
(
n
−
1
)
,
{\displaystyle \ ={\frac {1}{12}}(n+1)n(n-1),}
其中归一化条件为
p
(
2
,
−
2
)
=
1
2
{\displaystyle p(2,-2)={\frac {1}{2}}}
.综上所述, Witt algebra在复数域唯一非零的central extension, 即维拉宿代数的生成元满足以下交换子
[
L
m
,
L
n
]
=
(
m
−
n
)
L
m
+
n
+
c
1
12
(
n
+
1
)
n
(
n
−
1
)
δ
m
+
n
,
0
{\displaystyle [L_{m},L_{n}]=(m-n)L_{m+n}+c{\frac {1}{12}}(n+1)n(n-1)\delta _{m+n,0}}
.
局部保角变换
群表示论
Verma模
超对称维拉宿代数
注
参考
V.G. Kac: "Infinite dimensional Lie algebras ", Cambridge University Press
V.G. Kac / A.K. Raina : "Bombay Lectures on highest weight representations " , World Scientific, Singapore
Di Francesco / Mathieu / Senechal : "Conformal field theory", Springer Verlag
Wakimoto: "Infinite-dimensional Lie algebras " (日语书《无限次元环》的译本), American Mathematical Society
Ralph Blumenhagen/ Erik Plauschinn : "Introduction to conformal field theory: with applications to string theory", Springer Lecture notes in physics 779, Page 15