跳转到内容

液流电池

维基百科,自由的百科全书
Redox Flow Battery
典型的液流电池。 液体储存在两个水箱中,并通过水泵泵送到设置在两个电极之间的一张膜上[1]

液流电池(英语:Flow battery),一种蓄电池,在这个系统中,通常包含两个容器,其中储存著液体化学溶液,形成两个次系统。这两个次系统间的连接部份,为发电区,以一个薄膜隔开[2][3]。这两种化学溶液,由它们所在容器,流动到发电区,隔著薄膜,产生离子交换,透过这种方式来进行放电或储电。它的发电能力,可以经由能斯特方程计算出来,在实作上,通常是介于1.0 至 2.2伏特之间。

液流电池技术上类似于既是燃料电池又是电化电池(电化学可逆性)。虽然它具有技术上的优势,比如潜在的可分离液体储罐和接近无限的使用寿命超过大部分传统的充电电池,目前的液流电池实现方式相对较少,并需要更复杂的电子产品[需要解释]

能量容量是电解质体积(液体电解质的数量)的函数,并且功率是电极表面积的函数。

构造原理

液流电池是可再充电的燃料电池,其中含有一种或多种溶解的电活性元素的电解质流过电化电池,该电化学电池将化学能直接可逆地转化为电(电活性元素是"可以参与电极反应的溶液中的元素或者可以被吸附在电极"上)。额外的电解质通常被储存在外部,通常在水箱中,并且通常泵送通过反应器的电池(或多个电池)上,尽管重力供料系统也是已知的。通过更换电解液(以与内燃机的再填充燃料箱类似的方式)可以快速“再充电”液流电池,同时回收用过的材料以重新通电。许多液流电池由于其低成本和足够的导电性而使用碳毡电极,尽管这些电极由于其对许多氧化还原电对的低固有活性而在某种程度上限制了充电/放电功率[4][5]

换句话说,液流电池就像电化电池一样,除了离子溶液(电解质)不被存储在电极周围的电池中。 相反,离子溶液储存在电池外部,并且可以被进料到电池中以产生电。 可以产生的总电量取决于储存水箱的尺寸。

液流电池受电化学工程设计原则的约束[6]

类型

已经开发了各种类型的液流电池[7],包括氧化还原,混合和无膜。 传统电池和液流电池之间的根本区别在于,能量不是作为传统电池中的电极材料被存储,而是作为液流电池中的电解质被存储。

化学成分

已经尝试了各种用于液流电池的化学品[2]

Couple 最大电池电压 (V) 平均电极功率密度 (W/m2) 平均流体能量密度 (W·h/kg or W·h/L) 循环
溴酸锂 1.1 15,000 750 Wh/Kg
氯酸锂 1.4 10,000 1400 Wh/Kg
- 1.07 7,950
铁-铁英语Iron_redox_flow_battery]] 1.21 500
铁– 0.62 <200
铁– 0.43 <200
铁– 1.07 <200
有机 (2013) 0.8 13000 21.4 Wh/L 10
有机 (2015) 1.2 7.1 Wh/L 100
MV-TEMPO 1.25 8.4 Wh/L 100
钒-钒(硫酸盐) 1.4 ~800 25 Wh/L
钒-钒(溴化物) 50 Wh/L 2000[2]
钠-溴多硫化物英语Polysulfide bromide battery 1.54 ~800
锌-溴英语Zinc–bromine battery 1.85 ~1,000 75 Wh/Kg
铅-酸(甲磺酸盐) 1.82 ~1,000
锌-铈(甲磺酸盐)英语Zinc-cerium battery 2.43 <1,200–2,500
锌-锰(VI)/锰(VII) 1.2 60 Wh/L

参看

参考资料

  1. ^ Qi, Zhaoxiang; Koenig, Gary M. Review Article: Flow battery systems with solid electroactive materials. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena. 2017-05-12, 35 (4): 040801 [2018-12-06]. ISSN 2166-2746. doi:10.1116/1.4983210. (原始内容存档于2017-10-26). 
  2. ^ 2.0 2.1 2.2 Badwal, Sukhvinder P. S.; Giddey, Sarbjit S.; Munnings, Christopher; Bhatt, Anand I.; Hollenkamp, Anthony F. Emerging electrochemical energy conversion and storage technologies. Frontiers in Chemistry. 24 September 2014, 2 [2018-12-06]. PMC 4174133可免费查阅. PMID 25309898. doi:10.3389/fchem.2014.00079. (原始内容存档于2014-11-29). 
  3. ^ Alotto, P.; Guarnieri, M.; Moro, F. Redox Flow Batteries for the storage of renewable energy: a review. Renewable & Sustainable Energy Reviews. 2014, 29: 325–335. doi:10.1016/j.rser.2013.08.001. 
  4. ^ Aaron, Douglas. In Situ Kinetics Studies in All-Vanadium Redox Flow Batteries. ECS Electrochemistry Letters: A29–A31. doi:10.1149/2.001303eel. 
  5. ^ McCreery, Richard L. Advanced Carbon Electrode Materials for Molecular Electrochemistry. Chemical Reviews. July 2008, 108 (7): 2646–2687 [2018-12-06]. ISSN 0009-2665. doi:10.1021/cr068076m. (原始内容存档于2019-08-11) (英语). 
  6. ^ Arenas, L.F.; Ponce de León, C.; Walsh, F.C. Engineering aspects of the design, construction and performance of modular redox flow batteries for energy storage. Journal of Energy Storage. June 2017, 11: 119–153. doi:10.1016/j.est.2017.02.007. 
  7. ^ Noack, J.; Roznyatovskaya, N.; Herr, T.; Fischer, P. The Chemistry of Redox-Flow Batteries.. Angew. Chem. Int. Ed. 2015, 54: 9776–9809. doi:10.1002/anie.201410823. 

外部链接