跳转到内容

概率逻辑

本页使用了标题或全文手工转换
维基百科,自由的百科全书

概率逻辑(或或然性逻辑)的目标是组合概率论的处理不确定性的能力和演绎逻辑开发结构的能力。结果是更加丰富和更有表达力的形式化,并有广阔的可能应用领域。概率逻辑的困难是增加了它们的概率论和逻辑构件的计算复杂性。

提议

有很多概率逻辑的提议:

  • 术语“概率逻辑”首先用于[N86],这里的句子的真值是概率。提议的语义推广导致了概率性逻辑蕴涵,在所有句子的概率都是要么 0 要么 1 的时候,它简化为平常的逻辑蕴涵。这种推广应用于可以建立句子的有限集合的一致性的很多逻辑系统。
  • 概率论证[KM95,H05]理论中,概率不直接附加到逻辑句子上。转而它假定在句子中涉及到的变量 的特定子集 定义了在对应的子-σ-代数上的一个概率空间。这引出了有关 的两个不同的概率测度,分别叫做“支持度”和“可能度”。支持度可以被当作非加性(non-additive)“可证明性的概率”,它普遍化了普通逻辑的蕴涵()和经典后验概率()的概念。在数学上,这个观点兼容于Dempster-Shafer理论
  • 证据推理[RLS90]理论也定义了非加性“可证明性的概率”(或“认识概率”)作为逻辑蕴涵(可证明性)和概率二者的一般概念。这个想法通过考虑一个认识算子 K 扩大了标准命题逻辑,它表示一个理性代理关于世界的知识陈述。概率接着定义在结果的所有命题句子 p 的“认识全集” Kp 上,并争论说这是对于分析者最好的信息。从这个角度看,Dempster-Shafer理论好像是概率推理的普遍形式。
  • 主观逻辑[J01]理论的中心概念是关于在给定逻辑句子中涉及的某些命题变量的“评判”。一个评判(opinion)是对表达各种无知程度的单一概率值的二维扩展。对于有关某个询问变量的整体评判的计算,这个理论分别提议了对各种逻辑连结词的算子。其中多数都完全兼容于 Dempster组合规则

可能的应用领域

引用

  • [A98] E. W. Adams. A Primer of Probability Logic. CSLI Publications, Stanford, 1998.
  • [C37] R. Carnap. Logical Foundations of Probability. University of Chicago Press, Chicago, USA, 1937.
  • [C91] R. Chuaqui. Truth, Possibility and Probability: New Logical Foundations of Probability and Statistical Inference. Number 166 in Mathematics Studies. North-Holland, 1991.
  • [G94] G. Gerla. Inferences in Probability Logic. Artificial Intelligence, 70(1–2):33–52, 1994.
  • [H05] R. Haenni. Towards a Unifying Theory of Logical and Probabilistic Reasoning. ISIPTA'05, 4th International Symposium on Imprecise Probabilities and Their Applications, pages 193–202, Pittsburgh, USA, 2005. [1]
  • [J01] A. J?sang. A logic for uncertain probabilities. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 9(3):279–311, 2001.
  • [KM95] J. Kohlas and P.A. Monney. A Mathematical Theory of Hints. An Approach to the Dempster-Shafer Theory of Evidence. Lecture Notes in Economics and Mathematical Systems , vol. 425. Springer. 1995.
  • [K70] H. E. Kyburg. Probability and Inductive Logic. Macmillan, New York, 1970.
  • [K74] H. E. Kyburg. The Logical Foundations of Statistical Inference. Reidel, Dordrecht, Netherlands, 1974.
  • [N86] N. J. Nilsson. Probabilistic logic. Artificial Intelligence, 28(1):71–87, 1986.
  • [R05] J. W. Romeijn. Bayesian Inductive Logic. PhD thesis, Faculty of Philosophy, University of Groningen, Netherlands, 2005. [2]
  • [RLS92] E. H. Ruspini, J. Lowrance, and T. Strat. Understanding evidential reasoning. International Journal of Approximate Reasoning, 6(3):401–424, 1992.
  • [W02] J. Williamson. Probability Logic. In D. Gabbay, R. Johnson, H. J. Ohlbach, and J. Woods, editors, Handbook of the Logic of Argument and Inference: the Turn Toward the Practical, pages 397-424. Elsevier, Amsterdam, 2002.

参见

外部链接