跳转到内容

卡克托维克数字

维基百科,自由的百科全书
卡克托维克数字的20个数字

卡克托维克数字(英语:Kaktovik numerals)是一个由阿拉斯加州因纽皮雅特人创造的二十进制记数系统。它们具有象似性,形状表示所代表的数字。

阿拉斯加州的所有爱斯基摩-阿留申语系语言和伊努皮克语,它们的计数系统都采用二十进制。人们熟悉的十进制阿拉伯数字不适用于伊努皮克语和其他因努伊特语言。为了解决这个问题,阿拉斯加州卡克托维克的学生们于1994年发明了一个记数系统,[1],现在在因纽皮雅特人中广为流传,被加拿大考虑使用。[2]

图片显示卡克托维克数字0至19。更大的数字由这些数字以进位制组成:二十写作一个一和一个零(𝋁𝋀),四十写作一个二和一个零(𝋂𝋀),四百写作一个一和两个零(𝋁𝋀𝋀),八百写作一个二和两个零(𝋂𝋀𝋀),如此类推。

数字的相应口语(书写)形式为:

0 1 2 3 4
atausiq malġuk piŋasut sisamat
5 6 7 8 9
tallimat itchaksrat tallimat malġuk tallimat piŋasut quliŋuġutaiḷaq
10 11 12 13 14
qulit qulit atausiq qulit malġuk qulit piŋasut akimiaġutaiḷaq
15 16 17 18 19
akimiaq akimiaq atausiq akimiaq malġuk akimiaq piŋasut iñuiññaŋŋutaiḷaq
20
iñuiññaq

系统

伊努皮克语,像其他因努伊特语言一样,有一个二十进制次底数为五的记数系统。也就是说,数量以二十记数(如法语和丹麦语),而5、10和15有自己的中间数。因此78会被视作“三个二十加十五和三”。[3]

卡克托维克数字的图形反映伊努皮克语记数系统的词语结构。例如,在伊努皮克语里,数字七叫做tallimat malġuk(五和二),而七的卡克托维克数字由一个上粗线(五)和两个下粗线(二)组成:𝋇。同样地,十二和十七分别叫qulit malġuk(十和二)和akimiaq malġuk(十五和二),而它们的卡克托维克数字分别为两个和三个上粗线(十和十五),加上两个下粗线:𝋌𝋑[4]

数值

表格中列出在个位左右侧三个位的卡克托维克数字的十进制数值。[4]

卡克托维克数字的十进制数值
n n×20³ n×20² n×20¹ n×20⁰ n×20⁻¹ n×20⁻² n×20⁻³
1 𝋁,𝋀𝋀𝋀
8,000
𝋁𝋀𝋀
400
𝋁𝋀
20
𝋁
1
𝋀.𝋁
0.05
𝋀.𝋀𝋁
0.0025
𝋀.𝋀𝋀𝋁
0.000125
2 𝋂,𝋀𝋀𝋀
16,000
𝋂𝋀𝋀
800
𝋂𝋀
40
𝋂
2
𝋀.𝋂
0.1
𝋀.𝋀𝋂
0.005
𝋀.𝋀𝋀𝋂
0.00025
3 𝋃,𝋀𝋀𝋀
24,000
𝋃𝋀𝋀
1,200
𝋃𝋀
60
𝋃
3
𝋀.𝋃
0.15
𝋀.𝋀𝋃
0.0075
𝋀.𝋀𝋀𝋃
0.000375
4 𝋄,𝋀𝋀𝋀
32,000
𝋄𝋀𝋀
1,600
𝋄𝋀
80
𝋄
4
𝋀.𝋄
0.2
𝋀.𝋀𝋄
0.01
𝋀.𝋀𝋀𝋄
0.0005
5 𝋅,𝋀𝋀𝋀
40,000
𝋅𝋀𝋀
2,000
𝋅𝋀
100
𝋅
5
𝋀.𝋅
0.25
𝋀.𝋀𝋅
0.0125
𝋀.𝋀𝋀𝋅
0.000625
6 𝋆,𝋀𝋀𝋀
48,000
𝋆𝋀𝋀
2,400
𝋆𝋀
120
𝋆
6
𝋀.𝋆
0.3
𝋀.𝋀𝋆
0.015
𝋀.𝋀𝋀𝋆
0.00075
7 𝋇,𝋀𝋀𝋀
56,000
𝋇𝋀𝋀
2,800
𝋇𝋀
140
𝋇
7
𝋀.𝋇
0.35
𝋀.𝋀𝋇
0.0175
𝋀.𝋀𝋀𝋇
0.000875
8 𝋈,𝋀𝋀𝋀
64,000
𝋈𝋀𝋀
3,200
𝋈𝋀
160
𝋈
8
𝋀.𝋈
0.4
𝋀.𝋀𝋈
0.02
𝋀.𝋀𝋀𝋈
0.001
9 𝋉,𝋀𝋀𝋀
72,000
𝋉𝋀𝋀
3,600
𝋉𝋀
180
𝋉
9
𝋀.𝋉
0.45
𝋀.𝋀𝋉
0.0225
𝋀.𝋀𝋀𝋉
0.001125
10 𝋊,𝋀𝋀𝋀
80,000
𝋊𝋀𝋀
4,000
𝋊𝋀
200
𝋊
10
𝋀.𝋊
0.5
𝋀.𝋀𝋊
0.025
𝋀.𝋀𝋀𝋊
0.00125
11 𝋋,𝋀𝋀𝋀
88,000
𝋋𝋀𝋀
4,400
𝋋𝋀
220
𝋋
11
𝋀.𝋋
0.55
𝋀.𝋀𝋋
0.0275
𝋀.𝋀𝋀𝋋
0.001375
12 𝋌,𝋀𝋀𝋀
96,000
𝋌𝋀𝋀
4,800
𝋌𝋀
240
𝋌
12
𝋀.𝋌
0.6
𝋀.𝋀𝋌
0.03
𝋀.𝋀𝋀𝋌
0.0015
13 𝋍,𝋀𝋀𝋀
104,000
𝋍𝋀𝋀
5,200
𝋍𝋀
260
𝋍
13
𝋀.𝋍
0.65
𝋀.𝋀𝋍
0.0325
𝋀.𝋀𝋀𝋍
0.001625
14 𝋎,𝋀𝋀𝋀
112,000
𝋎𝋀𝋀
5,600
𝋎𝋀
280
𝋎
14
𝋀.𝋎
0.7
𝋀.𝋀𝋎
0.035
𝋀.𝋀𝋀𝋎
0.00175
15 𝋏,𝋀𝋀𝋀
120,000
𝋏𝋀𝋀
6,000
𝋏𝋀
300
𝋏
15
𝋀.𝋏
0.75
𝋀.𝋀𝋏
0.0375
𝋀.𝋀𝋀𝋏
0.001875
16 𝋐,𝋀𝋀𝋀
128,000
𝋐𝋀𝋀
6,400
𝋐𝋀
320
𝋐
16
𝋀.𝋐
0.8
𝋀.𝋀𝋐
0.04
𝋀.𝋀𝋀𝋐
0.002
17 𝋑,𝋀𝋀𝋀
136,000
𝋑𝋀𝋀
6,800
𝋑𝋀
340
𝋑
17
𝋀.𝋑
0.85
𝋀.𝋀𝋑
0.0425
𝋀.𝋀𝋀𝋑
0.002125
18 𝋒,𝋀𝋀𝋀
144,000
𝋒𝋀𝋀
7,200
𝋒𝋀
360
𝋒
18
𝋀.𝋒
0.9
𝋀.𝋀𝋒
0.045
𝋀.𝋀𝋀𝋒
0.00225
19 𝋓,𝋀𝋀𝋀
152,000
𝋓𝋀𝋀
7,600
𝋓𝋀
380
𝋓
19
𝋀.𝋓
0.95
𝋀.𝋀𝋓
0.0475
𝋀.𝋀𝋀𝋓
0.002375

起源

阿拉斯加州地图中的北坡自治市镇,许多伊努皮克语说话者都居住于此

1990年代初,阿拉斯加州卡克托维克的Harold Kaveolook学校的一个数学充实活动中,[1]学生们注意到他们的语言使用了一个二十进制系统,当他们使用阿拉伯数字写数字或做算术时,他们的符号不够,写不到伊努皮克语数字。[5]学生们首先创造了十个额外符号,但是发现它们难以记住。小镇的中学有九位学生,所以全班学生都可以合作创造一个二十进制记数系统。他们的老师,William Bartley,指导了他们。[5]

学生们集思广益后,学生们想出了一个理想系统会有的几个性质:

  1. 简易:符号应该要好记
  2. 像似:符号与其意思之间的关系一定要清楚
  3. 效率:它们必须要好写,可以快速地连笔写下来
  4. 独特:它们应该要跟阿拉伯数字有巨大的差异,避免产生混淆
  5. 美感:它们一定要顺眼[5]

在二十进制的进位制记数系统中,数字二十会写作一的数字和零的数字。伊努皮克语没有一个零的词语,所以学生们决定0的卡克托维克数字应该看起来像呈交叉的双手,意味著什么都没数。[5]

当中学学生们开始向年轻的学生教他们的新系统时,年轻的学生们往往会将数字压缩到同大小的方块内。这样,他们制造了一个记数系统,五进制组成数字的上部分,而馀数组成下部分。这个系统在算术里显得特别有用。[5]

计算

为卡克托维克数字而设计的伊努皮克算盘

算盘

学生们在学校工作坊里制造了二十进制算盘[1][5]这些本来是帮人们将数字从十进制转换到二十进制,但是学生们发现他们的设计适合于进行二十进制算术。算盘的上部分的每一行有三个珠子,各个代表五,而下部分每一行有四个珠子,各个代表一。[5]

算术

简单长除法:𝋃,𝋐𝋈𝋁(30,561)÷ 𝋃𝋁(61)= 𝋁𝋅𝋁(501)(二十进制:3,G81 ÷ 31 = 151)。除数𝋃𝋁(红色)可以除被除数的头两个数字一次(蓝色),所以商有一个一(蓝色)。它可以除之后两个数字(下划线)一次,但是这次,它被旋转了(红色),所以商的下一个数字是一个被旋转的一(五,红色)。最后两个数字可以除一次,对应著商的最后一个数字(白色)。
需要运用更多倍块法的长除法:𝋎𝋉𝋍,𝋍𝋁𝋆(46,349,226)÷ 𝋇𝋁𝋆(2,826)= 𝋂,𝋁𝋀𝋁(16,401)(二十进制制 E9D,D16 ÷ 716 = 2,101)。除数𝋇𝋁𝋆可以将被除数的头三个数字除两次(红色和蓝色),于是商有一个二(红色和蓝色);后面三个数字可以除一次(绿色);之后的三个除不了(商的零);剩下的白色数字可以除一次。

学生们发现他们的新系统有一个优点,就是用这个做算术时比阿拉伯数字更容易。[5]加两个数字时,它们的结果“看”上去会是它们的和。例如:

2 + 2 = 4

𝋂 + 𝋂 = 𝋄

做减法更容易:减数字时,可以去除适当数量的粗线,便可获得答案。[5]

另一个优点出现在长除法里。它的视觉因素和五的次底数,使被除数很大的长除法跟短除法一样容易,因为它不需要写中间步骤的乘法和减法。[1]学生们可以用彩色铅笔以倍块法英语Chunking (division)记住中间步骤的粗线。[5]

首先找出每个底数数字的积,再求出每个底数和次底数的积,最后找出每个次底数的积,可以做出简化乘法表

× 𝋁
1
𝋂
2
𝋃
3
𝋄
4
× 𝋁
1
𝋂
2
𝋃
3
𝋄
4
× 𝋅
5
𝋊
10
𝋏
15
1 𝋁 𝋁 𝋂 𝋃 𝋄 5 𝋅 𝋅 𝋊 𝋏 𝋁𝋀 5 𝋅 𝋁𝋅 𝋂𝋊 𝋃𝋏
2 𝋂 𝋂 𝋄 𝋆 𝋈 10 𝋊 𝋊 𝋁𝋀 𝋁𝋊 𝋂𝋀 10 𝋊 𝋂𝋊 𝋅𝋀 𝋇𝋊
3 𝋃 𝋃 𝋆 𝋉 𝋌 15 𝋏 𝋏 𝋁𝋊 𝋂𝋅 𝋃𝋀 15 𝋏 𝋃𝋏 𝋇𝋊 𝋋𝋅
4 𝋄 𝋄 𝋈 𝋌 𝋐

这些乘法表对卡克托维克数字的乘法已经足够,但是有底数和次底数的因数需要首先被拆解:

6 * 3 = 18

𝋆 * 𝋃 = (𝋁 * 𝋃) + (𝋅 * 𝋃) = 𝋒

在以上例子中,因数𝋆(6)不在乘法表里,但是表中有它的组成部件,𝋁(1)和𝋅(5)。

影响

卡克托维克数字在因纽皮雅特人中获得广泛的使用。他们被引入了语言沉浸计划,复兴了本来面临著淘汰之危的二十进制计数,因为英语中学流行著十进制系统。[1][5]

1995年,发明这个系统的卡克托维克中学生毕业到巴罗(现名乌特恰维克)的高中,却没有忘掉他们的发明。他们获准向本地中学生教这个。本地的Iḷisaġvik社区学院英语Iḷisaġvik College在它的目录中加入了因努伊特数学课。[5]

1996年,因努伊特历史、语言及文化委员会正式采用这个记数系统。[5]1998年,加拿大的因纽特人北极圈理事会推荐在该国发展及使用卡克托维克数字。[2]

重要性

与之前的年份相比之下,卡克托维克中学的加州成就测验分数于1997年激增。新数字推行前,平均分一直都在第20个百分位;推行后,分数超越了国家平均分。有些人推测以十进制和二十进制算数的优势,跟可以用两种思考方式观察世界的双语学生的优点不相上下。[5]

一个本土记数系统的发展,可以给阿拉斯加州本地学生示范数学是依附于他们的文化和语言的,而不是由西方文化传授而来。这跟“数学只是用来帮人入读大学的东西”一个曾经很普遍的观点有所不同。非本地学生可以看到这是一个不同的世界观的一个实际例子,是民族数学英语Ethnomathematics的一部分。[6]

编码

卡克托维克数字被分配在多文种补充平面的一个区段上(U+1D2C0-1D2DF)。[7]它们于2021年4月被统一码技术委员会接受,将于2022年作为Unicode 15的一部分发表。它们占有U+1D2C0 KAKTOVIK NUMERAL ZERO到U+1D2D3 KAKTOVIK NUMERAL NINETEEN。

卡克托维克数字[1][2]
统一码码表页面存档备份,存于互联网档案馆) (PDF)
  0 1 2 3 4 5 6 7 8 9 A B C D E F
U+1D2Cx 𝋀 𝋁 𝋂 𝋃 𝋄 𝋅 𝋆 𝋇 𝋈 𝋉 𝋊 𝋋 𝋌 𝋍 𝋎 𝋏
U+1D2Dx 𝋐 𝋑 𝋒 𝋓
Notes
1.^ 依据统一码 15.0
2.^ 灰色区域为未分配码位

外部链接

参考文献

  1. ^ 1.0 1.1 1.2 1.3 1.4 Bartley, Wm. Clark. Making the Old Way Count (PDF). Sharing Our Pathways. January–February 1997, 2 (1): 12–13 [February 27, 2017]. (原始内容存档 (PDF)于2013-06-25). 
  2. ^ 2.0 2.1 Regarding Kaktovik Numerals. Resolution 89-09. Inuit Circumpolar Council. 1998. 存档副本. [2021-05-12]. 原始内容存档于2017-02-02. 
  3. ^ MacLean (2014) Iñupiatun Uqaluit Taniktun Sivuninit / Iñupiaq to English Dictionary, p. 840 ff.
  4. ^ 4.0 4.1 MacLean (2014) Iñupiatun Uqaluit Taniktun Sivuninit / Iñupiaq to English Dictionary, p. 832
  5. ^ 5.00 5.01 5.02 5.03 5.04 5.05 5.06 5.07 5.08 5.09 5.10 5.11 5.12 5.13 Bartley, William Clark. Counting on tradition: Iñupiaq numbers in the school setting. Hankes, Judith Elaine; Fast, Gerald R. (编). Perspectives on Indigenous People of North America. Changing the Faces of Mathematics. Reston, Virginia: National Council of Teachers of Mathematics. 2002: 225–236. ISBN 978-0873535069. 
  6. ^ Engblom-Bradley, Claudette. Seeing mathematics with Indian eyes. Williams, Maria Sháa Tláa (编). The Alaska Native Reader: History, Culture, Politics. Duke University Press. 2009: 237–245. ISBN 9780822390831.  See in particular p. 244页面存档备份,存于互联网档案馆).
  7. ^ Roadmap to the SMP页面存档备份,存于互联网档案馆) Unicode Inc., 2021. Retrieved March 5, 2021