此条目页介绍的是关于三相交流电数学和电学的理论。
- 关于为什么要使用三相交流电及其应用,请见“三相交流电”。
- 关于其他有“三相”之名的用语,请见“三相”。
在电子工程学中,三相交流电一般是将可变的电压通过三组不同的导体。这三组电压幅值相等、频率相等、彼此之间的相位差为120度。
通常来说,三相交流电分三角形接法(Δ)和星型接法(Y)两种。三角形接法即为将各相电源或负载依次首尾相连,形成一个三角环;而星型接法则是将各相电源或负载的一端连接在一点,形成一个中性点,这种接法又称为三相三线制。如果从该中性点再引出一条中性线,则整个结构变为三相四线制。其中星型接法允许对各相加上不同的电压。例如常见的230/400伏三相交流电,就是在中性点和任意一相上加上230伏,余下的两相各加上400伏的电压。三角形接法由于各相首尾相连,只能存在一种电压,但是其优点在于即使三相中有一相失去作用,整个系统仍然可以运作(效率为原来的57.7%)。[1]
定义
假设有一台使用星型接法的发电机,将其三个负载的加入点命名为L1、L2、L3,则加在三相上的电压分别为:
其中:
- 代表最大电压,
- 代表相位角
- 代表时间,单位为秒
- 代表频率,单位为转/秒
- 、和则分别代表L1到中性点(N)、L2到中性点和L3到中性点的电压。
电压和电流
线电压(Line to Line Voltage, Line Voltage)为两条相线间的电压。相电压(Vph)为负载端所获得的电压,随连接方式而异。
线电流(IL)为相线上的电流大小。相电流(Iph)为负载端的电流大小。
- 星形接法
在星形接法,线电压是相电压的√3倍,线电流等于相电流。
- 三角形接法
在三角形接法,线电压等于相电压,线电流是相电流的√3倍。
功率
星形接法和三角形接法的总功率,都可使用同一公式计算:
- 开三角形接法
三角形接法其中一个绕阻被移除,则变成开三角形(Open Delta)。
假设单相变压器可以输出电压V及电流I,两个变压器的功率为
用作三相变压器时,功率为
换言之,两个变压器可使用的功率为原来的86.6%。
对比三个变㱘器,整个系统的功率变成原来的57.7%。因为两个变压器的功率因素不同,其中一个提供无功功率,另一个消耗无功功率,所以可用输出并不是66.7%。
稳定输出
一般在三相的电力系统中,每一相负载的做功的大小均相同。通常会先论证电动机在稳定输出的情况下运作,再考虑不稳定的情况。
恒定功率转化
三相发电机的特性在于,当各相的负载具有电阻性质时,其输出功率是恒定的。
为了使计算更方便,先定义一个无量纲的功率值作为中间量,则:
代回:
最终结果中不含(相位角)由此可见发电机动率的输出不会随着时间的变化而变化。对于大型发电机来说,这点尤为重要。
实际上,发电机的负载不一定要带有电阻的性质,只需各个相位相等即可,设:
因此最大电流为:
所有相位上的瞬时电流大小为:
这时各个相位的功率输出为:
利用三角恒等式里的积化和差与和差化积公式:
得出瞬时功率输出为:
中括号中的三项互相抵消,得出最终的结果为:
或者
中线电流
当一个星形接法是平衡负载,即使接上中线也没有电流。流过中性点的电流即三相电流的向量之和,参见基尔霍夫定律。
定义一个非无量纲量的电流,大小为:
流过中线的电流大小为零。因此将中线拿掉而不影响电路本身,证明输出的功率是恒定的。一般三相三线制只有在三相的电源或者负荷都连接在同一个电路上(例如三相电动机),否则各相的输入电压的波动会造成输出功率的不稳定。
不稳定输出
在实际的应用中,很少出现理论上输出功率很稳定的情况。利用对称分量法来简化电路,一个不恒定输出的系统可以看作是三个电压分别为正、零、负的恒定输出系统的叠加。
在一个限定的三相电路中,只需要知道三相的模量和流过中性点电流的大小。中性点电流的计算一般先求三相电流的复数之和,在代换回极坐标系的形式。假设三相内的电流分别为, 和,则流经中性点的电流大小为:
最后的极坐标系中的三相和的模量:
- [2]
非线性负载
在线性的情况下,只有在三相的电源或者负载不均衡的情况下,中性点的电流才不等于零。但是当在实际的使用中,接入的用电器中会使用饱和电抗,光敏、压敏电阻等非线性的电路元件,由于用电器本身电抗的变化,也会造成输出功率的不平衡。[3] [4]
旋转磁场
任何一个多相的电路,根据电流随着时间的变化,通过旋转即可生成磁场,这也是异步电动机的工作原理。感应电动机是异步电动机的一种,指的是仅有一套绕组联接电源的异步电动机。
励磁磁动势
定子三相对称绕组流过三相对称电流时,产生合成基波旋转磁动势。将该磁动势用空间矢量F0表示,其幅值为
式中,N1和kdp1分别为定子绕组的每相串联匝数和基波绕组因数;p为极对数;m1为定子绕组相数,对于三相异步电动机,m1=3。
对于其他多相系统的转化
任意两个随着时间t变化的电压之间一定存在着相互位移的关系,同样,一个三相的电源通过变压器可以转化为多相。例如,利用特殊的变压器,能将三相的电源转变为一个二相电源。此类变压器一般称为相位转换器。当三相的电力通过高压线传输到用户的社区在传输到每一户家中时,一般利用角接电容或星接电容将三相变为单项,为家庭用户提供电力。但是相应的,输出功率会有所下降。[5]
输出功率的测量
用传感器可以测量三相电路的输出功率,无中线要用到两个传感器,有中性线要用到三个。[6]需要使用传感器的数量总是比测量的电路的数量少一个。[7]若采用高压计量,则需要两个电压互感器及两个电流互感器(2VT+2CT)分别用来量度电压及电流。
若使用功率分析仪用来分析谐波电流,宜使用四个电流互感器测量所有带电导体的电流,以提高准确度。因为每个电流互感器都有误差,利有三个测量值计算剩下的未知值,误差也变成了三倍。
参见
参考资料
供电 |
---|
电学概念 | |
---|
能量来源 | |
---|
发电 | |
---|
输电 | |
---|
故障 | |
---|
继电保护 | |
---|
经济与政策 | |
---|
统计 | |
---|
|