β粒子
此条目需要补充更多来源。 (2022年1月2日) |
组成 | 电子(负β衰变) 正子(正β衰变) |
---|---|
符号 | β β−(负β衰变) β+(正β衰变) |
电荷 | +1 e(正β衰变) -1 e(负β衰变) |
CAS号 | 12587-47-2 |
β粒子(英文:Beta particle),也被称作β射线或β辐射,为β衰变时从原子核放射出的高能、高速的电子或正电子。β衰变可分为β−衰变和β+衰变,分别产生电子和正电子。[2]
能量为0.5 MeV的β粒子大约有1公尺的射程,其距离取决于粒子能量。
β粒子是一种游离辐射,从辐射防护的角度来说,它被认为比γ射线更容易游离,但比α粒子更不易游离。游离性越强,对生物组织的危害更大,穿透力则越低。
β衰变的形式
β−衰变(发射电子)
一个拥有过量中子的不稳定原子核可能发生β−衰变,使中子转变成质子、电子和反电中微子(微中子的反粒子):
n
→
p
+
e−
+
ν
e
这个过程由弱相互作用产生。中子放出W−玻色子变成质子。从夸克的尺度来看,下夸克经由放出W−玻色子变成上夸克,使中子(一个上夸克和两个下夸克)变成质子(两个上夸克和一个下夸克)。W−玻色子则衰变为一个电子和一个反微中子。
核子反应炉中制造的多中子核分裂产物时常发生β−衰变。自由中子也会透过这个过程衰变。这两种途径让反应堆的燃料棒产生大量的β射线和反微中子。
β+衰变(发射正电子)
一个拥有过量质子的不稳定原子核可能发生β+衰变,使质子转变成中子、正电子和电中微子:
p
→
n
+
e+
+
ν
e
只有当子核结合能的绝对值比母核的大时,核内才会发生β+衰变(意即,子核处于低能阶)。
β衰变图
右方的衰变图表展示了铯-137的β衰变。137Cs以其在661 KeV的伽玛尖峰而著名,但那其实是由放射性子核种137mBa放出。此图表展示了放射线的种类、能量,相对含量和衰变后的子核种。
磷-32,一个β粒子放射物,经常用于药物治疗,其有14.29天的短暂半衰期[3],并经过β衰变转变为硫-32,如下方的核反应:
此衰变会放出1.709 MeV的能量[3]。电子的平均动能约为0.5 MeV,几乎无法探测的反电微中子则带有剩馀的能量。和其他放射出β射线的核种相比,电子含有中等的能量。它可以被1公尺的空气或5厘米的压克力阻挡。
与其他粒子的交互作用
放射物最常放出的三种辐射:α、β和γ当中,β的穿透力和游离性皆为中间值。虽然不同放射性物质发射的β粒子能量不同,大部分的β粒子都可以被几厘米的铝抵挡。然而,这不代表它可以阻挡所有的β放射性同位素:当它们减速时,β粒子会放出更具穿透力的γ射线。分子量较低的元素制成的挡板会产生低能量的γ,使得他们的防护能力比起以铅这类高分子量元素为材料的挡板更有效。
因为β射线是由高能粒子组成,它的游离性比γ更强。当β粒子穿过物质时,它会因电磁交互作用而减速而可能发出制动辐射。
在水中,核分裂产物发出的β射线的速度可能超过水中的光速(即真空中光速的75 %),[注 1]并因此在通过水时发出蓝色的切连科夫辐射。如右图,我们可以透过覆盖反应堆的水观察从泳池反应堆的燃料棒发出的强烈β射线。
侦测与测量
β粒子对物质的游离和激发效应是辐射探测仪侦测及测量β辐射的基本过程。气体的游离被用于电离室和盖革计数器,闪烁体的激发则被用于闪烁计数器。下方的表格展示了以SI和非SI制表示的辐射量:
名称 | 单位 | 符号 | 导出量 | 年分 | 换算成SI制 |
---|---|---|---|---|---|
放射性活度 (A) | 贝克勒 | Bq | s−1 | 1974 | SI 单位 |
居礼 | Ci | 3.7 × 1010 s−1 | 1953 | 3.7×1010 Bq | |
拉塞福 | Rd | 106 s−1 | 1946 | 106 Bq | |
辐射暴露 (X) | 库仑/千克 | C/kg | C⋅kg−1 | 1974 | SI 单位 |
伦琴 | R | erg / 0.001293 g | 1928 | 2.58 × 10−4 C/kg | |
吸收剂量 (D) | 戈瑞 | Gy | J⋅kg−1 | 1974 | SI 单位 |
尔格/克 | erg/g | erg⋅g−1 | 1950 | 1.0 × 10−4 Gy | |
雷德 | rad | 100 erg⋅g−1 | 1953 | 0.010 Gy | |
等效剂量 (H) | 西弗 | Sv | J⋅kg−1 × WR | 1977 | SI 单位 |
雷姆 | rem | 100 erg⋅g−1 x WR | 1971 | 0.010 Sv | |
有效剂量 (E) | 西弗 | Sv | J⋅kg−1 × WR × WT | 1977 | SI 单位 |
雷姆 | rem | 100 erg⋅g−1 × WR × WT | 1971 | 0.010 Sv |
- 戈瑞(Gy)是吸收剂量的SI单位,其代表被照射的材料储存的辐射能量。对β射线来说其量值与以西弗为单位的等效剂量相同,其表示低等辐射对人体组织的随机生物效应。对β来说,辐射能从吸收剂量转换成等效剂量的换算因子为1,α粒子则是20,因子越大,其游离性越高,对生物组织危害越大。
应用
β粒子可以用于治疗如眼癌及骨癌,它也能用作追踪器。锶-90是最常用来制造β粒子的材料。
β粒子也可用于产品厚度的品管,如以滚轴系统制成的纸。部分的β粒子在射向产品时会穿过去。如果产品太薄或太厚,其吸收的辐射量也会不同。监管品质的仪器便会透过辐射量调整产品厚度。
氚管,一种发光设备,含有氚及磷光体。当氚衰变时,它会放出β粒子;β粒子打中磷光体,使磷光体发出光子,就像是电视中的阴极射线管一样。这种光源不需要外加能量,只要氚还在,光就不会熄灭(磷光体也不会自己产生化学变化);其产生的光会在12.32年,也就是氚的半衰期后降为一半。
同位素放射性标记物的β+(正电子)衰变是正电子发射电脑断层扫描(PET scan)中正电子的来源。
历史
当贝克勒在做荧光实验时,意外地发现铀会发出一种像X光一样无法阻挡的辐射,让被黑色包装纸包住的底片曝光。
拉赛福继续做这些实验并发现了两种不同的辐射:
- α粒子并没有在贝克尔底片上出现,这是因为它们很容易被黑色包装纸吸收;
- β粒子的穿透力是α粒子的100倍。
拉赛福于1899年发表他的实验成果。[4]
1900年,贝克勒以汤木生用来研究阴极射线及辨识电子的方法成功测量β粒子的荷质比(e/m)。他发现β粒子和汤木生所发现的电子的荷质比相同,因此他认为β粒子就是电子。
医学
β粒子可以用于化疗以杀死癌细胞。
注释
- ^ 水中的光速为真空中光速(简称c)的75 %,β粒子的速度比0.75 c大,但小于c。
相关条目
参考资料
- ^ Radiation Basics. United States Nuclear Regulatory Com. 2017-10-02.
- ^ Lawrence Berkeley National Laboratory. Beta Decay. Nuclear Wall Chart. United States Department of Energy. 9 August 2000 [17 January 2016]. (原始内容存档于2020-03-24).
- ^ 3.0 3.1 phosphorus 32. Fact Guru Astronomy knowledge base. 2003. (原始内容存档于2006-07-05).
- ^ E. Rutherford. Uranium radiation and the electrical conduction produced by it. Philosophical Magazine. 8 May 2009, 47 (284): 109–163 [Paper published by Rutherford in 1899] [2021-10-15]. doi:10.1080/14786449908621245. (原始内容存档于2016-12-02).
延伸阅读
- Radioactivity and alpha, beta, gamma and Xrays (页面存档备份,存于互联网档案馆)
- Rays and Particles (页面存档备份,存于互联网档案馆) University of Virginia Lecture
- Betavoltic Battery: Scientists Invent 30 Year Continuous Power Laptop Battery (页面存档备份,存于互联网档案馆) at NextEnergyNews.com
- Radioactive laptops? Perhaps not...,存档于互联网档案馆(存档日期 October 5, 2007)
- Basic Nuclear Science Information (页面存档备份,存于互联网档案馆) at the Lawrence Berkeley National Laboratory