跳转到内容

类太阳恒星

维基百科,自由的百科全书

类太阳恒星包括太阳型恒星(solar-type star)、太阳相似体(solar analog)、孪生太阳(solar twin)等,是与太阳特别相似的那些恒星。这样的分类是有阶层性的,孪生是与太阳最接近的,其次是相似体,最后是太阳型[1]。观察这些恒星最重要的是能更好的理解太阳与其他恒星相关的各种性质,特别是恒星与行星的适居性。

与太阳相似的

这三种与太阳相似度类型的定义,反映出天文观测技术的演变。起初,太阳型恒星的定义只是考虑与太阳最接近的相似性。然后,观测技术的改善可以提供更精确的关键测量,像是温度,可以筛检出与太阳更为相似的恒星。最后,在技术上的改善使精确度持续的提升,孪生太阳是与太阳几乎完全相同的恒星。

太阳的相似度可以检查一些得到的数值 -像是温度,可以从色指数推导,较之下,只有太阳的温度是可以经由直接的测量获得,是唯一确认无误的[1]。对于和太阳不同的恒星,就不会进行交叉的比对[2]

太阳型恒星

太阳(左)与相似但规模略小些,活动也较弱的天仓五 (右)比较。

这些恒星大致上与太阳相似,它们都是主序星B-V色指数在0.48至0.80之间,而太阳的B-V色指数为0.65。或者,可以使用基于光谱类型的定义,如从F8 VK2 V,这将对应于0.50至1.00的B-V色指数[1]。这样的类太阳恒星清单将会相当广泛,大约有10%的恒星会适合这样的定义[来源请求]

太阳型恒星显示它们的自转速率和色球活动(如钙的H和K线的发射)与日冕活动(例如X射线辐射)之间有高度的相关性[来源请求]。当太阳型恒星因为主序星生命期中的磁制动而降低自转速率,这些也与年龄有粗略的相关性。Mamajek和Hillenbrand (2008)[3]曾经以它们的色球活动为基础(通过衡量钙的H和K发射谱线)估计距离在16秒差距内的108颗太阳型(F8V — K2V)主序恒星的年龄。

下表列出基于目前的测量,在50光年的距离内,类太阳恒星中满足太阳型恒星的样品。

太阳型恒星的例子
恒星名称 J2000座标[4] 距离[4]
(ly)
恒星
分类
[4]
温度
(K)
金属量
(dex)
注解
赤经 赤纬
波江座ε 03h 32m 55.8s -09° 27′ 29.7″ 10.5 K2V 5,153 –0.11 [5]
鲸鱼座τ 01h 44m 04.1s -15° 56′ 15″ 11.9 G8V 5,344 –0.52 [6]
波江座40A 04h 15m 16.3s -07° 39′ 10″ 16.5 K1V 5,126 –0.31 [6]
波江座82 03h 19m 55.7s -43° 04′ 11.2″ 19.8 G8V 5,338 –0.54 [7]
孔雀座δ 20h 08m 43.6s -66° 10′ 55″ 19.9 G8IV 5,604 +0.33 [5]
HR 7722 20h 15m 17.4s -27° 01′ 59″ 28.8 K2V 5,166 –0.04 [5]
格利泽86A 02h 10m 25.9s -50° 49′ 25″ 35.2 G9V 5,163 -0.24 [6]
双鱼座54 00h 39m 21.8s +21° 15′ 02″ 36.1 K0V 5,129 +0.19 [7]
御夫座V538 05h 41m 20.3s +53° 28′ 51.8″ 39.9 K1V 3,500-5,000 -0.20 [7]
HD 14412 02h 18m 58.5s -25° 56′ 45″ 41.3 G5V 5,432 -0.46 [7]
HR 4587 12h 00m 44.3s -10° 26′ 45.7″ 42.1 G8IV 5,538 0.18 [7]
HD 172051 18h 38m 53.4s -21° 03′ 07″ 42.7 G5V 5,610 -0.32 [7]
武仙座72 17h 20m 39.6s +32° 28′ 04″ 46.9 G0V 5,662 -0.37 [7]
HD 196761 20h 40m 11.8s -23° 46′ 26″ 46.9 G8V 5,415 -0.31 [5]
豺狼座Nu² 15h 21m 48.1s -48° 19′ 03″ 47.5 G4V 5,664 -0.34 [5]

太阳相似体

这些恒星是在光度计的测量下与太阳相似,有以下的性质:

  • 与太阳的温度差异在500 K以内(大约在5,200至6,300K)
  • 金属量是太阳的50—200%(± 0.3 dex),意味着这些恒星的原行星盘有类似于太阳的尘埃数量,可以让行星形成。
  • 没有靠近的伴星(轨道周期为十天或更短),因为这样的伴星会激化恒星的活动。

类太阳恒星不能满足更严谨的孪生太阳标准,在50光年距离之内的类太阳恒星以距离的递增列于下表:

恒星名称 J2000座标[4] 距离[4]
(ly)
恒星
分类
[4]
温度
(K)
金属量
(dex)
注解
赤经 赤纬
半人马座α A 14h 39m 36.5s -60° 50′ 02″ 4.37 G2V 5,847 +0.24 [8]
半人马座α B 14h 39m 35.0s -60° 50′ 14″ 4.37 K1V 5,316 +0.25 [8]
蛇夫座70 A 18h 05m 27.3s +02° 30′ 00″ 16.6 K0V 5,314 –0.02 [9]
天龙座σ 19h 32m 21.6s +69° 39′ 40″ 18.8 K0V 5,297 –0.20 [10]
仙后座ηA 00h 49m 06.3s +57° 48′ 55″ 19.4 G0V 5,941 –0.17 [11]
双鱼座107 01h 42m 29.8s +20° 16′ 07″ 24.4 K1V 5,242 –0.04 [7][12]
猎犬座β 12h 33m 44.5s +41° 21′ 27″ 27.4 G0V 5,930 -0.30 [7]
室女座61 13h 18m 24.3s -18° 18′ 40″ 27.8 G5V 5,558 –0.02 [5]
杜鹃座ζ 00h 20m 04.3s –64° 52′ 29″ 28.0 F9.5V 5,956 –0.14 [6]
猎户座ψ¹ A 05h 54m 23.0s +20° 16′ 34″ 28.3 G0V 5,902 –0.16 [7]
后发座β 13h 11m 52.4s +27° 52′ 41″ 29.8 G0V 5,970 –0.06 [7]
HR 4523A 11h 46m 31.1s –40° 30′ 01″ 30.1 G5V 5,629 –0.29 [5]
大熊座61 11h 41m 03.0s +34° 12′ 06″ 31.1 G8V 5,483 –0.12 [7]
HR 4458A 11h 34m 29.5s –32° 49′ 53″ 31.1 K0V 5,629 –0.29 [5]
HR 511 01h 47m 44.8s +63° 51′ 09″ 32.8 K0V 5,333 +0.05 [7]
苍蝇座α 06h 10m 14.5s –74° 45′ 11″ 33.1 G5V 5,594 +0.10 [6]
网罟座ζ1 03h 17m 46.2s -62° 34′ 31″ 39.5 G3-5V 5,733 -0.22 [6]
网罟座ζ2 03h 18m 12.8s -62° 30′ 23″ 39.5 G2V 5,843 -0.23 [6]
巨蟹座55 08h 52m 35.81s +28° 19′ 51″ 40.3 G8V 5,235 +0.25 [11]
HD 69830 08h 18m 23.9s -12° 37′ 56″ 40.6 K0V 5,410 -0.03 [6]
HD 10307 01h 41m 47.1s +42° 36′ 48″ 41.2 G1.5V 5,848 -0.05 [7]
HD 147513 16h 24m 01.3s -39° 11′ 35″ 42.0 G1V 5,858 +0.03 [5]
波江座58 04h 47m 36.3s -16° 56′ 04″ 43.3 G3V 5,868 +0.02 [6]
仙女座εA 01h 36m 47.8s +41° 24′ 20″ 44.0 F8V 6,212 +0.13 [6]
HD 211415 A 22h 18m 15.6s –53° 37′ 37″ 44.4 G1-3V 5,890 -0.17 [6]
大熊座47 10h 59m 28.0s +40° 25′ 49″ 45.9 G1V 5,954 +0.06 [6]
天炉座αA 03h 12m 04.3s -28° 59′ 21″ 46.0 F6V 6,275 -0.19 [6]
巨蛇座φA 15h 44m 01.8s +02° 30′ 55″ 47.9 G5V 5,636 -0.03 [7]
HD 84117 09h 42m 14.4s –23° 54′ 56″ 48.5 F8V 6,167 –0.03 [6]
HD 4391 00h 45m 45.6s –47° 33′ 07″ 48.6 G3V 5,878 –0.03 [6]
小狮座20 10h 01m 00.7s +31° 55′ 25″ 49.1 G3 V 5,741 +0.20 [7]
凤凰座ν 01h 15m 11.1s –45° 31′ 54″ 49.3 F8V 6,140 +0.18 [6]
飞马座51 22h 57m 28.0s +20° 46′ 08″ 50.9 G2.5IVa 5,804 +0.20 [6]

孪生太阳

这些恒星与太阳更为相似,它们要具备以下的性质[1]

  • 与太阳的温度差异小于50K(大约是5720至5830K)。
  • 金属量为太阳的89—112% (± 0.05 dex),意味着这些恒星的原行星盘会有几乎同的尘埃量以形成行星。
  • 没有恒星的伴星,因为太阳本身是孤独的。
  • 与太阳的年龄差距在10亿年内(大约35亿至56亿)

以下是已知满足这些条件,最接近孪生太阳的恒星(太阳被列入以便进行比较):

恒星名称 J2000座标[4] 距离[4]
(ly)
恒星
分类
[4]
温度
(K)
金属量
(dex)
年龄
(十亿年)
注解
赤经 赤纬
太阳 0.00 G2V 5,778 +0.00 4.6 [13]
天蝎座18 16h 15m 37.3s –08° 22′ 06″ 45.1 G2Va 5,835 +0.04 4.2 [14]
HD 44594 06h 20m 06.1s -48° 44′ 29″ 84 G3V 5,840 +0.15 4.1 [15]
HD 150248 88 G2 5,750 -0.04 6.2 [16]
HD 164595 91 G2 5,790 -0.04 4.5 [16]
HD 195034 20h 28m 11.8s +22° 07′ 44″ 92 G5 5,760 -0.04 2.9 [17]
HD 117939 98 G3 5,765 -0.10 6.1 [16]
HD 138573 15h 32m 43.7s +10° 58′ 06″ 101 G5IV-V 5,750 0.0 5.6 [18][16]
HD 142093 15h 52m 00.6s +15° 14′ 09″ 103 G2V 5,841 –0.15 1.3 [18]
HD 71334 124 G2 5,710 -0.06 5.1 [16]
HD 98618 11h 21m 29.1s +58° 29′ 04″ 126 G5V 5,851 +0.03 4.2 [14]
HD 98649 137 G3 5,775 -0.02 4.7 [16]
HD 134664 140 G3 5,820 0.13 2.6 [16]
HD 143436 16h 00m 18.8s +00° 08′ 13″ 141 G0 5,768 +0.00 3.8 [18]
HD 129357 14h 41m 22.4s +29° 03′ 32″ 154 G2V 5,749 –0.02 8.2 [18]
HD 118598 160 G2 5,755 0.02 4.3 [16]
HD 133600 15h 05m 13.2s +06° 17′ 24″ 171 G0 5,808 +0.02 6.3 [14]
HD 115382 176 G1 5,775 -0.08 6.1 [16]
Goromladen 200 G2V 5,778 0.00 4.6
HD 101364 11h 40m 28.5s +69° 00′ 31″ 208 G5V 5,795 +0.02 3.5 [14][19]
BD +15 3364 209 G2 5,785 0.07 3.8 [16]
HD 197027 20h 41m 54.6s -27° 12′ 57.4″ 250 G3V 5,723 -0.013 8.2 [20]
YBP 1194 08h 51m 00.807s +11° 48′ 52.76″ 2934 G5V 5,780 +0.023 4.2 [21]

一些其他的恒星有时也会被题为孪生太阳的候选者,尤其是:常陈四(猎犬座β,请参阅Turnbull和Tarter)、双子座37 (参见Turnbull和Tarter)和天鹅座16 B(Porto de Mello et al. 2000)。然而,这三颗的温度和/或光度都太高了,不能成为真正的孪生太阳。而且,常陈四和天樽增一(双子座37)的金属量与孪生太阳相较也都太低。最后,奚仲四B(天鹅座16 B )是分离得很远的联星系统,并且要做为孪生太阳,年龄也太大了(至少已有70-80亿岁)。常陈四比较适合归类在前述的太阳相似体。

适居性

孪生太阳的另一种定义是适居恒星 -一颗恒星的性质特别适合类似地球的行星。这些性质包括稳定性、质量、年龄、金属量和邻近的伙伴。

  • 年龄至少30亿岁
  • 位于在主序带上
  • 是非变异性的恒星
  • 拥有类地行星
  • 支援动力学稳定的适居带

这需要恒星在主序带上停留的时间至少在30亿年以上,质量不能超过1.5倍的太阳质量,对应到最热的光谱型态为F5V。这样的恒星,在主序带的寿命结束时,绝对星等可以达到2.5等,或是太阳的8.55倍[22]

在理想的情况下,非变异性是指变异性低于1%,但在实际上达到3%依然是可接受的范围内。一颗恒星的适居带会由于伴星与轨道的离心率,造成辐照度的变异,也是一个问题[22]

多星系统中的类地行星,由于含有三颗或更多恒星的系统,是不可能有长期稳定的轨道。在联星系统中,稳定的轨道是两种型式之一:S型(卫星或是拱星)轨道是环绕其中一颗恒星;和P型(行星或联星)轨道,环绕着整个联星系统。离心木星也可能干扰适居带中的行星轨道[22]

金属量至少是太阳的40%([Fe/H] = -0.4)是形成类似地球的行星所必要的条件。高金属量与热木星的形成有着密切关联性,但这与生命无绝对的关系。像是一些气体巨行星最终有环绕着自己的轨道适居带,也可能有类似地球的卫星[22]

一个类似此种恒星的例子是HD 70642[23]

相关条目

参考资料

  1. ^ 1.0 1.1 1.2 1.3 Soderblom, David R.; King, Jeremy R. Solar-Type Stars: Basic Information on Their Classification and Characterization. Jeffrey C. Hall (编). Solar Analogs: Characteristics and Optimum Candidates. The Second Annual Lowell Observatory Fall Workshop - October 5-7, 1997. Lowell Observatory: 41–60. 1998 [2 March 2013]. Bibcode:1998saco.conf...41S. (原始内容存档于2021-01-07). 
  2. ^ D. R. Soderblom; J. R. King. Solar-Type Stars: Basic Information on Their Classification and Characterization. Solar Analogs : Characteristics and Optimum Candidates. 1998 [2008-02-26]. (原始内容存档于2009-05-24). 
  3. ^ E. E. Mamajek; L. A. Hillenbrand. Improved Age Estimation for Solar-Type Dwarfs Using Activity-Rotation Diagnostics. Astrophysical Journal. 2008, 687 (2): 1264. Bibcode:2008ApJ...687.1264M. arXiv:0807.1686可免费查阅. doi:10.1086/591785. 
  4. ^ 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 SIMBAD Astronomical Database. SIMBAD. Centre de Données astronomiques de Strasbourg. [2009-01-14]. (原始内容存档于2019-05-30). 
  5. ^ 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 Sousa, S. G.; et al. Spectroscopic parameters for 451 stars in the HARPS GTO planet search program. Stellar [Fe/H] and the frequency of exo-Neptunes. Astronomy and Astrophysics. August 2008, 487 (1): 373–381. Bibcode:2008A&A...487..373S. arXiv:0805.4826可免费查阅. doi:10.1051/0004-6361:200809698.  See VizieR catalogue J/A+A/487/373页面存档备份,存于互联网档案馆).
  6. ^ 6.00 6.01 6.02 6.03 6.04 6.05 6.06 6.07 6.08 6.09 6.10 6.11 6.12 6.13 6.14 6.15 6.16 Santos, N. C.; Israelian, G.; Randich, S.; García López, R. J.; Rebolo, R. Beryllium anomalies in solar-type field stars. Astronomy and Astrophysics. October 2004, 425 (3): 1013–1027. Bibcode:2004A&A...425.1013S. arXiv:astro-ph/0408109可免费查阅. doi:10.1051/0004-6361:20040510. 
  7. ^ 7.00 7.01 7.02 7.03 7.04 7.05 7.06 7.07 7.08 7.09 7.10 7.11 7.12 7.13 7.14 7.15 Holmberg J., Nordstrom B., Andersen J. The Geneva-Copenhagen survey of the solar neighbourhood. III. Improved distances, ages, and kinematics. Astronomy and Astrophysics. July 2009, 501 (3): 941–947. Bibcode:2009A&A...501..941H. arXiv:0811.3982可免费查阅. doi:10.1051/0004-6361/200811191.  See Vizier catalogue V/130页面存档备份,存于互联网档案馆).
  8. ^ 8.0 8.1 Porto de Mello, G. F.; Lyra, W.; Keller, G. R. The Alpha Centauri binary system. Atmospheric parameters and element abundances. Astronomy and Astrophysics. September 2008, 488 (2): 653–666. Bibcode:2008A&A...488..653P. arXiv:0804.3712可免费查阅. doi:10.1051/0004-6361:200810031. 
  9. ^ Casagrande, Luca; Flynn, Chris; Portinari, Laura; Girardi, Leo; Jimenez, Raul. The helium abundance and ?Y/?Z in lower main-sequence stars. Monthly Notices of the Royal Astronomical Society. December 2007, 382 (4): 1516–1540. Bibcode:2007MNRAS.382.1516C. arXiv:astro-ph/0703766可免费查阅. doi:10.1111/j.1365-2966.2007.12512.x. 
  10. ^ Boyajian, Tabetha S.; et al. Angular Diameters of the G Subdwarf µ Cassiopeiae A and the K Dwarfs s Draconis and HR 511 from Interferometric Measurements with the CHARA Array. The Astrophysical Journal. August 2008, 683 (1): 424–432. Bibcode:2008ApJ...683..424B. S2CID 8886682. arXiv:0804.2719可免费查阅. doi:10.1086/589554. 
  11. ^ 11.0 11.1 Valenti, Jeff A.; Fischer, Debra A. Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs. The Astrophysical Journal Supplement Series. July 2005, 159 (1): 141–166. Bibcode:2005ApJS..159..141V. doi:10.1086/430500.  See VizieR catalogue J/ApJS/159/141页面存档备份,存于互联网档案馆).
  12. ^ Kovtyukh, V. V.; Soubiran, C.; Belik, S. I.; Gorlova, N. I. High precision effective temperatures for 181 F-K dwarfs from line-depth ratios. Astronomy and Astrophysics. 2003, 411 (3): 559–564. Bibcode:2003A&A...411..559K. arXiv:astro-ph/0308429可免费查阅. doi:10.1051/0004-6361:20031378. 
  13. ^ Williams, D.R. Sun Fact Sheet. NASA. 2004 [2009-06-23]. (原始内容存档于2010-07-15). 
  14. ^ 14.0 14.1 14.2 14.3 Meléndez, Jorge; Ramírez, Iván. HIP 56948: A Solar Twin with a Low Lithium Abundance. The Astrophysical Journal. November 2007, 669 (2): L89–L92. Bibcode:2007ApJ...669L..89M. arXiv:0709.4290可免费查阅. doi:10.1086/523942. 
  15. ^ Sousa, S. G.; Fernandes, J.; Israelian, G.; Santos, N. C. Higher depletion of lithium in planet host stars: no age and mass effect. Astronomy and Astrophysics. March 2010, 512: L5. Bibcode:2010A&A...512L...5S. arXiv:1003.0405可免费查阅. doi:10.1051/0004-6361/201014125. 
  16. ^ 16.00 16.01 16.02 16.03 16.04 16.05 16.06 16.07 16.08 16.09 Porto de Mello, G. F.; da Silva, R.; da Silva, L. & de Nader, R. V. A photometric and spectroscopic survey of solar twin stars within 50 parsecs of the Sun; I. Atmospheric parameters and color similarity to the Sun. Astronomy and Astrophysics. March 2014, 563: A52. Bibcode:2014A&A...563A..52P. S2CID 119111150. arXiv:1312.7571可免费查阅. doi:10.1051/0004-6361/201322277. 
  17. ^ Takeda, Yoichi; Tajitsu, Akito. High-Dispersion Spectroscopic Study of Solar Twins: HIP 56948, HIP 79672, and HIP 100963. Publications of the Astronomical Society of Japan. 2009, 61 (3): 471–478. Bibcode:2009PASJ...61..471T. arXiv:0901.2509可免费查阅. doi:10.1093/pasj/61.3.471. 
  18. ^ 18.0 18.1 18.2 18.3 King, Jeremy R.; Boesgaard, Ann M.; Schuler, Simon C. Keck HIRES Spectroscopy of Four Candidate Solar Twins. The Astronomical Journal. November 2005, 130 (5): 2318–2325. Bibcode:2005AJ....130.2318K. arXiv:astro-ph/0508004可免费查阅. doi:10.1086/452640. 
  19. ^ Vázquez, M.; Pallé, E.; Rodríguez, P. Montañés. Is Our Environment Special?. The Earth as a Distant Planet: A Rosetta Stone for the Search of Earth-Like Worlds. Astronomy and Astrophysics Library. Springer New York. 2010: 391–418. ISBN 978-1-4419-1683-9. doi:10.1007/978-1-4419-1684-6.  See table 9.1.
  20. ^ Monroe, T. R.; et al. High Precision Abundances of the Old Solar Twin HIP 102152: Insights on Li Depletion from the Oldest Sun. The Astrophysical Journal Letters. 2013, 774 (2): 22. Bibcode:2013ApJ...774L..32M. S2CID 56111132. arXiv:1308.5744可免费查阅. doi:10.1088/2041-8205/774/2/L32. 
  21. ^ A. Önehag; A. Korn; B. Gustafsson; E. Stempels; D. A. VandenBerg. M67-1194, an unusually Sun-like solar twin in M67. Astronomy and Astrophysics. 2011, 528: A85. Bibcode:2011A&A...528A..85O. S2CID 119116626. arXiv:1009.4579可免费查阅. doi:10.1051/0004-6361/201015138. 
  22. ^ 22.0 22.1 22.2 22.3 Turnbull, M. C.; Tarter, J. C. Target Selection for SETI. I. A Catalog of Nearby Habitable Stellar Systems. The Astrophysical Journal Supplement Series. 2002, 145: 181. Bibcode:2003ApJS..145..181T. arXiv:astro-ph/0210675可免费查阅. doi:10.1086/345779. 
  23. ^ Solar System 'twin' found. BBC News. 2003-07-03 [2014-08-11]. (原始内容存档于2008-01-24). 

进阶读物

  • G. W. Lockwood & B. A. Skiff. The Photometric Variability of Sun-like Stars: Observations and Results, 1984—1995. The Astrophysical Journal. 1997, 485 (2): 789–811. Bibcode:1997ApJ...485..789L. doi:10.1086/304453. 
  • G. Porto de Mello, R. da Silva, & L. da Silva. A Survey of Solar Twin Stars within 50 Parsecs of the Sun. Bioastronomy 99: A New Era in the Search for Life. 2000, 213: 73. Bibcode:2000ASPC..213...73P. 
  • M. C. Turnbull & J. C. Tarter. Target Selection for SETI. II. Tycho-2 Dwarfs, Old Open Clusters, and the Nearest 100 Stars. The Astrophysical Journal Supplement Series. 2003, 149 (2): 423–436. Bibcode:2003ApJS..149..423T. doi:10.1086/379320. 
  • J. C. Hall & G. W. Lockwood. The Chromospheric Activity and Variability of Cycling and Flat Activity Solar-Analog Stars. The Astrophysical Journal. 2004, 614 (2): 942–946. Bibcode:2004ApJ...614..942H. doi:10.1086/423926.