自同构
数学上,自同构(automorphism)是从一个数学对象到自身的同构,可以看为这对象的一个对称,将这对象映射到自身而保持其全部结构的一个途径。一个对象的所有自同构的集合是一个群,称为自同构群,大致而言,是这对象的对称群。
定义
自同构的精确定义,依赖于“数学对象”的种类,及这对象的“同构”的准确界定。可以定义这些概念的最一般情形,是在数学的一个抽象分支,称为范畴论。范畴论是研究抽象对象和这些对象间的态射。
在范畴论中,自同构是一个自同态(即是一个对象到自身的一个态射)而同时为(范畴论所定义的)同构。
这是一个很抽象的定义,因为范畴论中,态射不一定是函数,对象不一定是集合。不过在更具象的情形中,对象会是有附加结构的集合,而态射会是保持这种结构的函数。
例如在抽象代数中,一个数学对象是代数结构,如群、环、向量空间等。一个同构就是双射的同态(同态按代数结构而定, 例如群同态、环同态、线性算子)。
恒等态射(恒等映射)在某些情况称为平凡自同构。相对地,其他(非恒等)自同构称为非平凡自同构。
自同构群
令 为一个群。由 到自身群同构称为 的一个自同构。所有 的自同构所构成的集合记为 ,该集合与复合作为群运算共同构成了一个群,称为 的自同构群。它满足群的公理:
- 闭合性:两个自同态的复合是另一个自同态。
- 结合性:态射复合一定有结合性。
- 单位元:单位元是一个对象到自身的恒等映射,按定义一定存在。
- 逆元素:任一同构按定义都有一个也是同构的逆映射,由于这逆映射也是同一对象的自同态,所以是自同构。
在一个范畴C中的一个对象X的自同构群,记为AutC(X),如果内文明显看出该范畴,可简记为Aut(X)。
例子
- 在集合论中,一个集合X的元素的任一个置换是一个自同构。X的自同构群也称为X上的对称群。
- 在初等算术中,整数集Z,考虑成在加法下的一个群,有唯一的非平凡自同构:取负。但是,考虑成一个环,便仅有平凡自同构。一般而言,取负是任何阿贝尔群的自同构,但不是一个环或域的自同构。
- 群自同构是一个群到自身的群同态。非正式而言,这是一个使得结构不变的群元素置换。对任何群G,有一个自然群同态G → Aut(G),其像是内自同构群Inn(G),其核是G的中心。因此若G有平凡中心,则可以嵌入到其自同构群之中。[1]
- 在线性代数中,向量空间V的一个自同态是一个线性算子 V → V。一个自同构是V上的一个可逆线性算子。当向量空间V是有限维的,其自同构群即是一般线性群GL(V)。
- 域自同构是从一个域到自身的一个双射环同构。有理数域Q和实数域R都没有非平凡域自同构。R的一些子域有非平凡域自同构,但不能扩展至整个R(因为它们不能保持一个数在R中有平方根的性质)。复数域C有唯一的非平凡自同构将R映至R:复共轭,但是有(不可数)无限多“野性”自同构(假设选择公理)。[2][3]域自同构对域扩张理论很重要,尤其是伽罗瓦扩张。在一个伽罗瓦扩张L/K的情形,L的自同构中,在子域K上逐点固定的所有自同构所组成的子群,称为该扩张的伽罗瓦群。
- p进数域Qp没有非平凡自同构。
- 在图论中,一个图的图自同构,是顶点的一个置换,使得边与非边保持不变:两个顶点若有边连接,则在置换下这两顶点的像有边连接,反之亦然。
- 在几何学中,空间的一个自同构有时称为空间的运动。一些特定名词也会使用:
历史
群自同构的一个最早期的例子,是爱尔兰数学家威廉·哈密顿在1856年给出。在他的Icosian calculus中,他发现了一个2阶的自同构,[4] 写道:
使得是新的五次单位根,与之前的五次单位根以完美互反性的关系相关联。[5]
内自同构和外自同构
有一些范畴,特别是群、环、李代数,其中的自同构可以分为两种,称为“内”自同构和“外”自同构。
对群而言,内自同构就是群本身的元素的共轭作用。对一个群G的每个元素a,以a共轭是一个运算φa : G → G,定义为φa(g) = aga−1(或a−1ga;用法各异)。易知以a共轭是一个群自同构。内自同构组成 Aut(G)的一个正规子群,记作Inn(G)。
其他的自同构称为外自同构。商群Aut(G) / Inn(G)通常记为Out(G);非平凡元素是包含外自同构的陪集。
在任何有幺元的环或代数中的可逆元a,可以同样定义内自同构。对于李代数,定义有少许不同。
另见
参考文献
- ^ PJ Pahl, R Damrath. §7.5.5 Automorphisms. Mathematical foundations of computational engineering Felix Pahl translation. Springer. 2001: 376. ISBN 3-540-67995-2.
- ^ Yale, Paul B. Automorphisms of the Complex Numbers (PDF). Mathematics Magazine. May 1966, 39 (3): 135–141 [2015-08-20]. JSTOR 2689301. doi:10.2307/2689301. (原始内容 (PDF)存档于2020-11-08).
- ^ Lounesto, Pertti, Clifford Algebras and Spinors 2nd, Cambridge University Press: 22–23, 2001, ISBN 0-521-00551-5
- ^ Sir William Rowan Hamilton. Memorandum respecting a new System of Roots of Unity (PDF). Philosophical Magazine. 1856, 12: 446 [2015-08-20]. (原始内容 (PDF)存档于2016-03-04).
- ^ 原文为"so that is a new fifth root of unity, connected with the former fifth root by relations of perfect reciprocity."