提示:此条目的主题不是
弦函数。
正弦 |
|
性质 |
奇偶性 | 奇 |
定义域 | (-∞,∞) |
到达域 | [-1,1] |
周期 | () |
特定值 |
当x=0 | 0 |
当x=+∞ | N/A |
当x=-∞ | N/A |
最大值 | |
最小值 | |
其他性质 |
渐近线 | N/A |
根 | () |
临界点 | () |
拐点 | () |
不动点 | 0 |
k是一个整数。 |
在数学中,正弦(英语:sine、缩写)是一种周期函数,是三角函数的一种。它的定义域是整个实数集,值域是。它是周期函数,其最小正周期为()。在自变量为(,其中为整数)时,该函数有极大值1;在自变量为()时,该函数有极小值-1。正弦函数是奇函数,其图像于原点对称。
在半个最小正周期内,正弦函数有反函数,称为反正弦函数。
符号史
正弦的符号为,取自拉丁文sinus,词源是梵文的jiva(“弓弦”,如今多写作jya)。这个词在阿拉伯语里转写为jiba(جيب),但该词无意义,阿拉伯语又好省略元音,故只写作jb(جب)。然而在从阿拉伯文翻译到拉丁文时,jb被解释为jayb(جيب),意为“胸部”或“乳房”,而拉丁文sinus便是克雷莫纳的杰拉德由此词翻译而来。该符号最早由法国数学家阿尔贝·热拉尔(Albert Gerard)使用(但他只使用了正弦、余弦和正切;其余三个符号则是被欧拉补足的)。
定义
直角三角形中
在直角三角形中,一个锐角的正弦定义为它的对边与斜边的比值,也就是:
其定义与余割函数互为倒数。
直角坐标系中
设是平面直角坐标系xOy中的一个象限角,是角的终边上一点,是P到原点O的距离,则的正弦定义为:
单位圆定义
图像中给出了用弧度度量的某个公共角。逆时针方向的度量是正角而顺时针的度量是负角。设一个过原点的线,同x轴正半部分得到一个角,并与单位圆相交。这个交点的y坐标等于。在这个图形中的三角形确保了这个公式;半径等于斜边并有长度1,所以有了。单位圆可以被认为是通过改变邻边和对边的长度并保持斜边等于1查看无限数目的三角形的一种方式。
对于大于或小于的角度,简单的继续绕单位圆旋转。在这种方式下,正弦变成了周期为2π的周期函数:
对于任何角度和任何整数。
级数定义
微分方程定义
由于正弦的导数是余弦,余弦的导数是负的正弦,因此正弦函数满足初值问题
这就是正弦的微分方程定义。
指数定义
正弦函数的指数定义可由欧拉公式导出:
恒等式
用其它三角函数来表示正弦
函数
|
sin
|
cos
|
tan
|
csc
|
sec
|
cot
|
|
|
|
|
|
|
|
两角和差公式
二倍角公式
三倍角公式
半角公式
和差化积公式
万能公式
含有正弦的积分
特殊值
径度
|
|
|
|
|
|
|
|
sin
|
|
|
|
|
|
|
|
角度
|
|
|
|
|
|
sin
|
|
|
|
|
|
正弦定理
正弦定理说明对于任意三角形,它的边是, 和而相对这些边的角是, 和,有:
也表示为:
它可以通过把三角形分为两个直角三角形并使用正弦的上述定义证明。在这个定理中出现的公共数是通过, 和三点的圆的直径的倒数。正弦定理用于在一个三角形的两个角和一个边已知时计算未知边的长度。这是三角测量中常见情况。
参考文献
外部链接
参见