跳转到内容

次协调逻辑

维基百科,自由的百科全书

次协调逻辑(英语:Paraconsistent logic)是尝试处理矛盾逻辑[1]。是不琐碎的(non-trivial)逻辑,它允许矛盾。更加特殊的,它允许断言一个陈述和它的否定,而不导致谬论。在经典逻辑中,从矛盾中可以推导出任何东西;这叫做ex contradictione quodlibet(ECQ),也叫做爆炸原理。次协调逻辑就是ECQ不成立的逻辑系统。

次协调逻辑可以用来建模有矛盾的系统,但不是任何东西都能从它推导出来的。在标准逻辑中,必须小心的防止形成说谎者悖论的陈述;次协调逻辑由于不需要排除这种陈述而更加简单, 尽管它仍然必须排除柯里悖论(Curry's Paradox)。 柯里悖论是逻辑学家哈斯凯尔·柯里(Haskell Brooks Curry)提出。 此外,次协调逻辑可以潜在的克服哥德尔不完备定理蕴涵的算术限制,而是完备的。

历史

次协调逻辑分别于1954年和1963年在南美由弗洛伦西奥•阿森霍(Florencio Asenjo)尤其是牛顿•达•科斯塔(Newton da Costa)在其博士学位论文中分别于1954年和1963年在南美独立提出[1],并着重于数学应用。 次协调逻辑以相干逻辑(也称相关逻辑)形式于1959年在英格兰由Smiley提出。 然而,术语“次协调”(paraconsistent)于1976 年首次由秘鲁哲学家Francisco Miró Quesada Cantuarias 最初使用。[2]

自1970年代以来,次协调逻辑逻辑的发展一直是国际性的。在阿根廷,澳大利亚,比利时,巴西,加拿大,捷克共和国,英国,德国,印度,以色列,日本,墨西哥,新西兰,波兰,苏格兰,西班牙,美国, 中国等地[1][3],都有正在开展的工作。已经召开了一系列有关次协调的大型国际会议。 1997年,第一届世界次协调大会在比利时根特大学举行。第二届世界大会于2000年在圣塞巴斯蒂昂(巴西圣保罗)举行,第三届于2003年在法国图卢兹举行,第三届于2008年在墨尔本(澳大利亚)举行。第五届世界大会于2013年在印度加尔各答举行。 2014年另一个重要的次协调会议在慕尼黑举行。

动机

发明次协调逻辑有很多动机。比如,不一致的(矛盾的)信息存在于, 信仰,道德,辩证法, 人工智能,形式语义, 集合论, 算法,和哥德尔不完备定理等领域, 经典逻辑的会导致反直觉结果的协调性(一致性)的不满足[1]。发明次协调逻辑的主要动机是坚信,应该有可能以受控和区分的方式,对这些含不一致的信息的系统进行推理。ECQ排除了这一点,因此必须放弃。

形式语义

语义悖论,特别是自指,提供了质问经典逻辑的形式根据。考虑说谎者悖论(这里的"<L>"表示"L这个命题"):

L)<L>不是真的。
L塞入自身,我们得到
"<L>不是真的"不是真的

看起来它说的事情同于

L' L是真的

(这种推理基于几个相当似是而非的但公认不是无懈可击的前提,关于双重否定除去的和在<P>和P之间联系--就是说在命题和命题所对应的事态之间的联系。粗略的说,我们称这种关系为"真理",所以我们能够在某种意义上,移入和移出引号和标记命题的括号)。并且,如果我们继续运做在关于真理本质的无可置疑的质朴假定之上,则L看起来是L' 的否定。所以,这是一个矛盾。(集合论和高阶逻辑的罗素悖论缘于类似的问题。)

经典逻辑(或者更一般的说协调逻辑)的坚定支持者可以简单的忽略这种问题,或者简单的说像L这样的句子是无意义的。可以理解的,次协调逻辑学家机警的接受了这些句子;毕竟,"这个句子是假的"好像是完全连贯的甚至发人深省的句子。接受遵照像L这样的句子和它的外在否定L' 同样是真理的立场,是摆脱这种语义悖论的一种可能方式。

次协调逻辑双面真理说的支持者Graham Priest,提供了一个例子,以表示无矛盾律和双面真理说对前提定义的看法差异:

“一位站在门口的人一半在门里一半在门外。”

对于"我在屋里"和与它否定的"我不在屋里"的逻辑辨证,无矛盾律认为“站在门口的人并非完全在屋内,故只属于"我不在屋里"且不属于"我在屋里"”;双面真理说则同时支持"我在屋里"和"我不在屋里"为真。可以看出,相对于无矛盾律的严格前提相信逻辑函数单射;双面真理说则相信逻辑命题属于四值概念(见相干逻辑)。要注意的是,这里无矛盾律的主张并非排中律,因为这个命题有真值

集合论

集合论和高阶逻辑的罗素悖论也给出了不一致(次协调)的信息的系统。

问题

经典逻辑中,句子的集合被称为是否定矛盾(不协调)的,如果对于某些句子并且

在经典逻辑中,在逻辑语言内任何句子都可以从否定矛盾集合中推导出来。类似的模型理论性质对经典逻辑是成立的。这叫做爆炸原理,因为一个单一的矛盾就确保推理可以在任何任意方向上进行。经典逻辑、直觉逻辑和多数其他逻辑遭受着这个问题。开发次协调逻辑是为了避免爆炸原理的有害效果。

为了解决这个问题,次协调逻辑可以简单的拒绝爆炸原理。当然,这么做可不是平凡的事情。爆炸是我们析取真值泛函概念的直接推论;要拒绝前者必然把问题带给后者,而它好像是良基的(well-founded)。

一些次协调逻辑:

  • 多值逻辑可以支持次协调真值
  • 相干逻辑支持真理的四值概念:真,假,非真非假,和次协调的亦真亦假。

知识表现中,对可废止推理系统做了很多关注,它们可以支持在更充分的证据可获得的时候否决以前的结论。可以证明可废止逻辑是次协调的。

次协调逻辑也可以用做次协调数学的基础,它允许矛盾而不使所有陈述成为可推导的结论。

来源

  • Béziau, J.-Y. "What is paraconsistent logic ?", in Frontiers of paraconsistent logic, D.Batens et al.(ed). 1999
  • Parsons, Terence. True Contradictions. Canadian Journal of Philosophy 20 (1990): 335-354.
  • Priest, Graham. What Is So Bad About Contradictions? Journal of Philosophy 95 (1998): 410-426.
  • Priest, G., Routley, R., and Norman, J.(eds.)Paraconsistent Logic: Essays on the Inconsistent, Philosophia Verlag, Munich, 1989.

参见

参考资料

  1. ^ 1.0 1.1 1.2 1.3 Priest, G. & Tanaka, K., Paraconsistent Logic, Stanford Encyclopedia of Philosophy (Winter 2004 Edition), Edward N. Zalta(ed.). [2020-11-16]. (原始内容存档于2019-08-11). 
  2. ^ Priest, Graham (2002). "Paraconsistent Logic.". In D. Gabbay; F. Guenthner (eds.). Handbook of Philosophical Logic. 6 (2nd ed.). The Netherlands: Kluwer Academic Publishers. pp. 287–393. ISBN 1-4020-0583-0.
  3. ^ 桂起权, 陈立直,朱福喜, 《次协调逻辑与人工智能作》,武汉大学出版社,ISBN9787307031685, 2002.