“
均方差”重定向至此。关于均方误差(MSE),详见“
均方误差”;关于均方根误差(RMSE),详见“
均方根误差”。
标准差,又称标准偏差、均方差 (英语:standard deviation,缩写SD,符号σ),在概率统计中最常使用作为测量一组数值的离散程度之用。标准差定义:为方差开算术平方根,反映组内个体间的离散程度;标准差与期望之比为标准离差率。测量到分布程度的结果,原则上具有两种性质:
- 为非负数值(因为平方后再做平方根);
- 与测量资料具有相同单位(这样才能比对)。
一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。其公式如下所列。
标准差的概念由卡尔·皮尔逊引入到统计中。
阐述及应用
简单来说,标准差是一组数值自平均值分散开来的程度的一种测量观念。一个较大的标准差,代表大部分的数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。
例如,两组数的集合{0, 5, 9, 14}和{5, 6, 8, 9}其平均值都是7,但第二个集合具有较小的标准差。
表述“相差个标准差”,即在 的样本(sample)范围内考量。
标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。
标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越小,代表回报较为稳定,风险亦较小。
总体的标准差
基本定义
为平均值。
简化计算公式
上述公式可以如下代换而简化:
所以:
根号里面,亦即方差()的简易口诀为:“平方的平均”减去“平均的平方”。
总体为随机变量
一随机变量的标准差定义为:
须注意并非所有随机变量都具有标准差,因为有些随机变量不存在期望。
如果随机变量为具有相同概率,则可用上述公式计算标准差。
离散随机变量的标准差
若是由实数构成的离散随机变量(英语:discrete random variable),且每个值的概率相等,则的标准差定义为:
- ,其中
换成用来写,就成为:
- ,其中
目前为止,与总体标准差的基本公式一致。
然而若每个可以有不同概率,则的标准差定义为:
- ,其中
这里,为的数学期望。
连续随机变量的标准差
若为概率密度的连续随机变量(英语:continuous random variable),则的标准差定义为:
其中为的数学期望:
标准差的特殊性质
对于常数和随机变量和:
-
- 其中:
- 表示随机变量和的协方差。
- 表示,即(的方差),对亦同。
样本的标准差
在真实世界中,找到一个总体的真实的标准差并不实际。大多数情况下,总体标准差是通过随机抽取一定量的样本并计算样本标准差估计的。
从一大组数值当中取出一样本数值组合,常定义其样本标准差:
样本方差是对总体方差的无偏估计。之所以中的分母要用而不是像总体样本差那样用,是因为的自由度为,这是由于存在约束条件。
范例
这里示范如何计算一组数的标准差。例如一群孩童年龄的数值为{5, 6, 8, 9}:
- 第一步,计算平均值︰
- 当(因为集合里有4个数),分别设为:
则平均值为
- 第二步,计算标准差︰
正态分布的规则
在实际应用上,常考虑一组数据具有近似于正态分布的概率分布。若其假设正确,则约68%数值分布在距离平均值有1个标准差之内的范围,约95%数值分布在距离平均值有2个标准差之内的范围,以及约99.7%数值分布在距离平均值有3个标准差之内的范围。称为“68-95-99.7法则”。
- .[1]
数字比率 标准差值
|
概率
|
包含之外比例
|
百分比
|
百分比
|
比例
|
0.318 639σ
|
25%
|
75%
|
3 / 4
|
6999674490000000000♠0.674490σ
|
7001500000000000000♠50%
|
7001500000000000000♠50%
|
1 / 7000200000000000000♠2
|
6999994458000000000♠0.994458σ
|
68%
|
32%
|
1 / 3.125
|
1σ
|
7001682689492000000♠68.2689492%
|
7001317310508000000♠31.7310508%
|
1 / 7000315148720000000♠3.1514872
|
7000128155200000000♠1.281552σ
|
80%
|
20%
|
1 / 5
|
7000164485400000000♠1.644854σ
|
90%
|
10%
|
1 / 10
|
7000195996400000000♠1.959964σ
|
95%
|
5%
|
1 / 20
|
2σ
|
7001954499736000000♠95.4499736%
|
7000455002640000000♠4.5500264%
|
1 / 7001219778950000000♠21.977895
|
7000257582900000000♠2.575829σ
|
99%
|
1%
|
1 / 100
|
3σ
|
7001997300204000000♠99.7300204%
|
6999269979600000000♠0.2699796%
|
1 / 370.398
|
7000329052700000000♠3.290527σ
|
99.9%
|
0.1%
|
1 / 7003100000000000000♠1000
|
7000389059200000000♠3.890592σ
|
99.99%
|
0.01%
|
1 / 7004100000000000000♠10000
|
4σ
|
7001999936660000000♠99.993666%
|
6997633400000000000♠0.006334%
|
1 / 7004157870000000000♠15787
|
7000441717300000000♠4.417173σ
|
99.999%
|
0.001%
|
1 / 7005100000000000000♠100000
|
7000450000000000000♠4.5σ
|
99.9993204653751%
|
0.0006795346249%
|
1 / 7005147159535800000♠147159.5358 3.4 / 7006100000000000000♠1000000 (每一边)
|
7000489163800000000♠4.891638σ
|
7001999999000000000♠99.9999%
|
6996100000000000000♠0.0001%
|
1 / 7006100000000000000♠1000000
|
5σ
|
7001999999426697000♠99.9999426697%
|
6995573303000000000♠0.0000573303%
|
1 / 7006174427800000000♠1744278
|
7000532672399999999♠5.326724σ
|
7001999999900000000♠99.99999%
|
6995100000000000000♠0.00001%
|
1 / 7007100000000000000♠10000000
|
7000573072900000000♠5.730729σ
|
7001999999990000000♠99.999999%
|
6994100000000000000♠0.000001%
|
1 / 7008100000000000000♠100000000
|
7000600000000000000♠6σ
|
7001999999998027000♠99.9999998027%
|
6993197300000000000♠0.0000001973%
|
1 / 7008506797346000000♠506797346
|
7000610941000000000♠6.109410σ
|
7001999999999000000♠99.9999999%
|
6993100000000000000♠0.0000001%
|
1 / 7009100000000000000♠1000000000
|
7000646695100000000♠6.466951σ
|
7001999999999900000♠99.99999999%
|
6992100000000000000♠0.00000001%
|
1 / 7010100000000000000♠10000000000
|
7000680650200000000♠6.806502σ
|
7001999999999990000♠99.999999999%
|
6991100000000000000♠0.000000001%
|
1 / 7011100000000000000♠100000000000
|
7σ
|
99.9999999997440%
|
6990256000000000000♠0.000000000256%
|
1 / 7011390682215445000♠390682215445
|
标准差与平均值之间的关系
一组数据的平均值及标准差常常同时作为参考的依据。从某种意义上说,如果用平均值来考量数值的中心的话,则标准差也就是对统计的分散度的一个“自然”的测度。因为由平均值所得的标准差要小于到其他任何一个点的标准差。较确切的叙述为:设为实数,定义函数:
使用微积分或者通过配方法,不难算出在下面情况下具有唯一最小值:
几何学解释
从几何学的角度出发,标准差可以理解为一个从维空间的一个点到一条直线的距离的函数。举一个简单的例子,一组数据中有3个值,。它们可以在3维空间中确定一个点。想像一条通过原点的直线。如果这组数据中的3个值都相等,则点就是直线上的一个点,到的距离为0,所以标准差也为0。若这3个值不都相等,过点作垂线垂直于,交于点,则的坐标为这3个值的平均数:
运用一些代数知识,不难发现点与点之间的距离(也就是点到直线的距离)是。在维空间中,这个规律同样适用,把换成就可以了。
参考文献
外部链接