跳转到内容

中位数

本页使用了标题或全文手工转换
维基百科,自由的百科全书

统计学上,中位数(英语:Median),又称中央值[1]中值,是一个样本、种群或概率分布中之一个数值,其可将数值集合划分为数量相等的上下两部分。对于有限的数集,可以通过把所有观察值高低排序后找出正中间的一个作为中位数。如果观察值有偶数个,则中位数不唯一,通常取最中间的两个数值的平均数作为中位数。

一个数集中最多有一半的数值小于中位数,也最多有一半的数值大于中位数。如果大于和小于中位数的数值个数均少于一半,那么数集中必有若干值等同于中位数。

连续随机变量X的分布函数为F(X),那么满足条件P(X≤m)=F(m)=1/2的数称为X或分布F的中位数。

对于一组有限个数的数据来说,其中位数是这样的一种数:这群数据的一半的数据比它大,而另外一半数据比它小。

计算有限个数的数据的中位数的方法是:把所有的同类数据按照大小的顺序排列。如果数据的个数是奇数,则中间那个数据就是这群数据的中位数;如果数据的个数是偶数,则中间那2个数据的算术平均值就是这群数据的中位数。

公式

实数按大小顺序(顺序,降序皆可)排列为

实数数列的中位数

其中 odd number 表示奇数,even number 表示偶数。


中位数特性

中位数在描述统计学上和平均数、众数并列为数据的集中趋势。三者的位置排序亦对应着偏度的正负偏态意义。一般而言,平均数是最常被使用做为数据的集中趋势,但如果有极端值存在,平均数的代表性降低,也就所谓的“男人女人平均一颗睾丸”的问题,因此在有极端值的状况下,中位数是比较好的集中趋势代表。因此,在各国的每人所得分布上,通常以中位数代表集中趋势,而非平均数[2]

中位数通常出现在描述统计学非参数统计,有参数的统计分析很少提及。中位数为集中趋势时,对应的离散趋势系数为平均绝对离差(Mean absolute deviation, MAD)或是四位位距(Q3 - Q1)。不过如果论及总体中位数的统计量时,仍需根据统计分析对抽样分配的要求,寻找总体中位数统计量的期望与方差,再依照点估计的充分、无偏、效率、一致性进行讨论。而总体中位数的统计量通常是样本中位数。因此,样本中位数的期望与方差就值得被讨论,进行基础研究。

正态分配下的中位数

正态分配下的平均数、中位数、众数都是同一个位置。目前最为世人熟知的是平均数的抽样分配会是正态分配,期望为总体平均数且方差为总体方差()。统计学对正态分配的总体平均数统计量说明甚多,并发展完善。那么中位数可基于概率分配模拟器和数值分析发展,在n个独立随机变量来自正态分配可生成n个随机样本,则E(样本中位数)=且Var(样本中位数)=,其中,k(n)受到样本个数(n)影响。当样本个数介于2至200时,两者的关系不明显,但可计算出样本个数和k(n)的关联表[3]

k(n)和n的对应表
n k(n) n k(n) n k(n)
2 0.500267128 70 0.021985179 138 0.011271806
3 0.448703237 71 0.021403637 139 0.011269587
4 0.298172500 72 0.021393271 140 0.011109049
5 0.286770401 73 0.020840845 141 0.011111745
6 0.214713620 74 0.020830427 142 0.010959968
7 0.210476952 75 0.020295864 143 0.010962027
8 0.168172011 76 0.020294599 144 0.010810205
9 0.166171644 77 0.019776971 145 0.010809127
10 0.138304145 78 0.019777466 146 0.010661452
11 0.137221972 79 0.019291777 147 0.010659591
12 0.117603985 80 0.019294767 148 0.010513172
13 0.116875871 81 0.018831955 149 0.010523498
14 0.102209683 82 0.018826854 150 0.010377973
15 0.101704592 83 0.018394657 151 0.010379735
16 0.090397468 84 0.018390467 152 0.010244606
17 0.090046842 85 0.017972657 153 0.010247290
18 0.081017991 86 0.017972309 154 0.010109136
19 0.080776427 87 0.017567447 155 0.010114347
20 0.073450103 88 0.017564340 156 0.009986419
21 0.073284584 89 0.017187295 157 0.009984465
22 0.067168338 90 0.017189110 158 0.009862704
23 0.067002164 91 0.016812903 159 0.009858886
24 0.061881619 92 0.016813666 160 0.009735345
25 0.061762647 93 0.016466660 161 0.009736185
26 0.057309720 94 0.016462668 162 0.009617128
27 0.057271174 95 0.016125488 163 0.009619325
28 0.053440064 96 0.016119237 164 0.009501480
29 0.053332370 97 0.015802880 165 0.009502525
30 0.049992614 98 0.015797856 166 0.009389839
31 0.049937448 99 0.015492872 167 0.009388423
32 0.047029351 100 0.015490432 168 0.009279058
33 0.046965211 101 0.015190773 169 0.009277712
34 0.044337988 102 0.015189776 170 0.009169514
35 0.044336558 103 0.014904567 171 0.009169768
36 0.041990927 104 0.014896640 172 0.009061071
37 0.041942218 105 0.014628725 173 0.009060657
38 0.039852927 106 0.014623638 174 0.008961003
39 0.039832458 107 0.014359452 175 0.008957769
40 0.037939073 108 0.014359166 176 0.008860612
41 0.037904745 109 0.014100614 177 0.008859363
42 0.036184274 110 0.014104129 178 0.008762802
43 0.036152192 111 0.013856818 179 0.008760489
44 0.034579591 112 0.013854712 180 0.008665028
45 0.034577569 113 0.013609600 181 0.008663662
46 0.033133177 114 0.013610680 182 0.008571695
47 0.033118807 115 0.013383360 183 0.008570240
48 0.031791145 116 0.013382329 184 0.008475410
49 0.031783399 117 0.013153728 185 0.008477845
50 0.030548873 118 0.013156167 186 0.008388634
51 0.030533811 119 0.012938560 187 0.008384818
52 0.029411882 120 0.012939455 188 0.008300454
53 0.029402885 121 0.012729706 189 0.008300175
54 0.028347691 122 0.012731381 190 0.008214157
55 0.028342062 123 0.012533040 191 0.008211878
56 0.027348747 124 0.012525181 192 0.008130539
57 0.027350473 125 0.012333899 193 0.008128310
58 0.026442809 126 0.012334408 194 0.008045347
59 0.026436289 127 0.012141084 195 0.008041810
60 0.025573242 128 0.012138522 196 0.007964784
61 0.025575279 129 0.011964057 197 0.007961234
62 0.024780610 130 0.011961887 198 0.007882679
63 0.024751923 131 0.011782874 199 0.007882009
64 0.024005574 132 0.011779941 200 0.007806200
65 0.024006688 133 0.011604216 201 0.007801090
66 0.023304209 134 0.011600908 202 0.007729016
67 0.023287460 135 0.011433315 203 0.007728333
68 0.022616908 136 0.011438587 204 0.007654504
69 0.022624425 137 0.011271806 205 0.007652196

如果样本个数超过200,但不超过1000时,两者有明显的关系,并且受到样本个数是否为奇数或偶数影响。此时可使用回归分析寻找两者的关系。

1. 样本个数为偶数,回归式为k(n) = 0.0000148965 + 1.5599936862 / n。

2. 样本个数为奇数,回归式为k(n) = 0.0000084608 + 1.5674001064 / n。

由此可得到样本中位数的方差和总体正态分配的方差形成稳定的对应关系[4]

参考文献

  1. ^ median - 中央值;中位數;正中的 - 國家教育研究院雙語詞彙. 国家教育研究院. [2022-04-21]. (原始内容存档于2018-11-24) (中文(台湾)). 
  2. ^ 台北市政府主计处,台北市家庭所得概况,民国106年。(连结页面存档备份,存于互联网档案馆))
  3. ^ (PDF) Source code of how to run sample median's variance. ResearchGate. [2021-10-21]. doi:10.13140/rg.2.2.16784.23041 (英语). 
  4. ^ (PDF) The Relationships between Variances of Normal Distribution and Sample Median: Sample size from 200 to 1000. ResearchGate. [2021-10-31]. doi:10.13140/rg.2.2.12462.13124/1 (英语). 

外部链接

本条目含有来自PlanetMathMedian of a distribution》的内容,版权遵守知识共享协议:署名-相同方式共享协议