可列即是對自然數可列,並不是簡稱,可數(可列)即是可以一個一個地由第一個元素開始數,必有唯一後繼元素可以數,而不會遺漏。一一對應是滿足遞移律的,如果 A 與 B 一一對應並且 B 與 C 一一對應,則 A 與 C 也一一對應,即是一個集合與一個可列集一一對應,則該集合亦與自然數集一一對應。對應並不是一一對應的簡稱。以每一個有理數乘以 2 而成的集合還是有理數集自身,以每一個無理數乘以 2 而成的集合還是無理數集自身,以每一個實數乘以 2 而成的集合還是實數集自身,但以每個整數乘以 2 而成的集合卻不是整數而只是偶數。有理數集是可列的,無理數集和實數集卻是不可列的。一一對應不必要使用自然排序,實數是可以與複數(複實數)一一對應的,幾何意義即是線擁有的點的數目與面的一樣多。--LungZeno(talk) 2009年3月2日 (一) 01:08 (UTC)[回复]