跳转到内容

2-氯-1,3-丙二醇

维基百科,自由的百科全书
2-氯-1,3-丙二醇
别名 2-MCPD
β-MCP
识别
CAS号 497-04-1  checkY
PubChem 10337
SMILES
 
  • ClC(CO)CO
InChI
 
  • InChI=1S/C3H7ClO2/c4-3(1-5)2-6/h3,5-6H,1-2H2
InChIKey DYPJJAAKPQKWTM-UHFFFAOYSA-N
性质
化学式 C3H7ClO2
摩尔质量 110.54 g·mol−1
外观 无色粘稠液体[1]
密度 1.3416 g·cm−3(0 °C,真空)
1.3241 g·cm−3(20 °C,真空)[1]
沸点 96~98 °C(3 mmHg[2]
122.5~123.5 °C(13.5 mmHg)[1]
折光度n
D
1.4817(25 °C)[2]
危险性
GHS危险性符号
《全球化学品统一分类和标签制度》(简称“GHS”)中有毒物质的标签图案
GHS提示词 危险
H-术语 H301
P-术语 P264, P270, P301+310, P405, P501
主要危害 急性毒性3级(经口)[3]
闪点 N.A.
若非注明,所有数据均出自标准状态(25 ℃,100 kPa)下。

2-氯-1,3-丙二醇是一种有机氯化合物,化学式为C3H7ClO2。它和其同分异构体3-氯-1,2-丙二醇一样,是一种食品污染物,具有细胞毒性[4]

合成

2-氯-1,3-丙二醇可由烯丙醇水反应制得。[1]

它也可在丙三醇盐酸羧酸催化下以副产物的形式伴随1,3-二氯-2-丙醇和3-氯-1,2-丙二醇生成。[5]

反应

2-氯-1,3-丙二醇在超声下和吡啶加热反应,可以生成N-(1,3-二羟基-2-丙基)吡啶𬭩氯化物。[6]

2-氯-1,3-丙二醇和胺反应,生成相应的季铵盐。

它和氢氧化钾反应,可以得到缩水甘油[7]它和氯化亚砜乙醚中反应,可以得到2-氯-1,3-丙二醇环亚硫酸酯。[8]

它和羧酸酐反应,可以得到相应的羧酸酯:[9]

2-氯-1,3-丙二醇和羧酸酐反应,可以得到单羧酸酯或双羧酸酯。

参考文献

  1. ^ 1.0 1.1 1.2 1.3 Read, John; Hurst, Eric. Conversion of allyl alcohol to glyceryl chloro- and bromohydrins. Journal of the Chemical Society, Transactions. 1922, 121: 989-999. ISSN 0368-1645. doi:10.1039/ct9222100989. 
  2. ^ 2.0 2.1 Ben-Ishay, D. A Novel Rearrangement of Substituted Cyclic Sulfites. The Journal of Organic Chemistry. 1958, 23 (12): 2013-2014. doi:10.1021/jo01106a619. 
  3. ^ 2-Chloro-1,3-propanediol. SigmaAldrich. [2024-07-09]. (原始内容存档于2024-07-09). 
  4. ^ Thorsten Buhrke, Falko Frenzel, Jan Kuhlmann & Alfonso Lampen. 2-Chloro-1,3-propanediol (2-MCPD) and its fatty acid esters: cytotoxicity, metabolism, and transport by human intestinal Caco-2 cells. Toxicokinetics and Metabolism. 2015, 89: 2243-2251 [2024-07-09]. doi:10.1007/s00204-014-1395-3. (原始内容存档于2024-07-09). 
  5. ^ R. Tesser, E. Santacesaria, M. Di Serio, G. Di Nuzzi, and V. Fiandra. Kinetics of Glycerol Chlorination with Hydrochloric Acid: A New Route to α,γ-Dichlorohydrin. Industrial & Engineering Chemistry Research. 2007, 46 (20): 6456–6465. doi:10.1021/ie070708n. 
  6. ^ Nayl, AbdElAziz A. ; Arafa, Wael A. A.; Ahmed, Ismail M.; Abd-Elhamid, Ahmed I.; El-Fakharany, Esmail M.; Abdelgawad, Mohamed A.; Gomha, Sobhi M.; Ibrahim, Hamada M.; Aly, Ashraf A.; Brase, Stefan; Mourad, Asmaa K. Novel Pyridinium Based Ionic Liquid Promoter for Aqueous Knoevenagel Condensation: Green and Efficient Synthesis of New Derivatives with Their Anticancer Evaluation. Molecules. 2022, 27 (9): 2940 [2024-07-09]. ISSN 1420-3049. doi:10.3390/molecules27092940. (原始内容存档于2024-08-16). 
  7. ^ Cespi, D.; Cucciniello, R.; Ricciardi, M.; Capacchione, C.; Vassura, I.; Passarini, F.; Proto, A. A simplified early stage assessment of process intensification: glycidol as a value-added product from epichlorohydrin industry wastes. Green Chemistry. 2016, 18 (16): 4559-4570. ISSN 1463-9262. 
  8. ^ P. B. D. de la Mare; W. Klyne; D. J. Millen; J. G. Pritchard and D. Watson. Cyclic sulphites derived from the chloropropanediols. Journal of the Chemical Society (Resumed). 1956: 1813-1817 [2024-07-09]. (原始内容存档于2024-08-14). 
  9. ^ Rahn, Anja K. K.; Yaylayan, Varoujan A. Characterization of electron ionization mass spectral (EIMS) fragmentation patterns of chloropropanol esters of palmitic acid using isotope labeling technique. Journal of Oleo Science. 2014, 63 (10): 1045-1055. ISSN 1345-8957. doi:10.5650/jos.ess14117. 

延伸阅读

  • Ananias Medina, Javier Ibáñez Abad, Pasi Tolvanen, Johan Wärnå, Kari Eränen, Tapio Salmi. Recent advances in glycerol hydrochlorination: Impact of reaction temperature, hydrogen chloride solubility and reaction intermediates. Chemical Engineering Science. 2022, 263: 118064. doi:10.1016/j.ces.2022.118064. 
  • Hassanein, Salah Mohamed; Burmakov, A. I.; Bloshchina, F. A.; Yagupollskii, L. M. Reaction of hydroxy and carboxyl compounds with sulfur tetrafluoride. XX. Reactions of glycols with sulfur tetrafluoride. Zhurnal Organicheskoi Khimii. 1988, 24 (8): 1633-1638. ISSN 0514-7492. CODEN ZORKAE.