維度正規化
在量子場論中,維度正規化是一種正規化辦法。Giambiagi、Bollini、[1][2] 杰拉德·特·胡夫特和马丁纽斯·韦尔特曼[3]都提出了這個辦法。物理學家使用維度正規化來計算费曼图的積分。积分的值是d的亞純函數;d是時空的維度。
其他應用
舉例
若d = 4 − ε,上文的積分是
有人認為Ζ函數正規化和維度正規化是等效的等同因為解析延拓。[5]
參考文獻
- ^ Bollini 1972, p. 20.
- ^ Bietenholz, Wolfgang; Prado, Lilian. Revolutionary physics in reactionary Argentina. Physics Today. 2014-02-01, 67 (2): 38–43. Bibcode:2014PhT....67b..38B. ISSN 0031-9228. doi:10.1063/PT.3.2277.
- ^ Hooft, G. 't; Veltman, M., Regularization and renormalization of gauge fields, Nuclear Physics B, 1972, 44 (1): 189–213, Bibcode:1972NuPhB..44..189T, ISSN 0550-3213, doi:10.1016/0550-3213(72)90279-9
- ^ Le Guillo, J.C.; Zinn-Justin, J. Accurate critical exponents for Ising-like systems in non-integer dimensions. Journal de Physique. 1987, 48 [2020-03-07]. (原始内容存档于2020-07-10).
- ^ A. Bytsenko, G. Cognola, E. Elizalde, V. Moretti and S. Zerbini, Analytic Aspects of Quantum Field, World Scientific Publishing, 2003, ISBN 981-238-364-6
閱讀
- Bollini, Carlos; Giambiagi, Juan Jose, Dimensional Renormalization: The Number of Dimensions as a Regularizing Parameter., Il Nuovo Cimento B (1971-1996) (Il Nuovo Cimento B), 1972, 12 (1): 20–26 [2020-03-07], doi:10.1007/BF02895558 (不活跃 2020-01-22), (原始内容存档于2017-10-16)
- Etingof, Pavel, Note on dimensional regularization, Quantum fields and strings: a course for mathematicians, Vol. 1,(Princeton, NJ, 1996/1997), Providence, R.I.: Amer. Math. Soc.: 597–607, 1999 [2020-03-07], ISBN 978-0-8218-2012-4, MR 1701608, (原始内容存档于2019-05-29)
- Hooft, G. 't; Veltman, M., Regularization and renormalization of gauge fields, Nuclear Physics B, 1972, 44 (1): 189–213, Bibcode:1972NuPhB..44..189T, ISSN 0550-3213, doi:10.1016/0550-3213(72)90279-9