跳转到内容

欧米加常数

维基百科,自由的百科全书
(重定向自歐米茄常數
欧米加常数
欧米加常数
識別
種類無理數
超越數
符號
位數數列編號OEISA030178
性質
定義
以此為的多項式或函數
表示方式
0.5671432904...
W(1),W朗伯W函数
二进制0.100100010011000001001101
十进制0.567143290409783872999968
十六进制0.91304D7C74B2BA5EAFDDAA62

欧米加常数是一个数学常数,定义为:

它是W(1)的值,其中W朗伯W函数

Ω的值大约为0.5671432904097838729999686622 (OEIS數列A030178)。它具有以下的性质:

我们可以用迭代的方法来计算Ω,从Ω0开始,用下面的数列进行迭代:

n→∞时,这个数列收敛于Ω。

无理数和超越数

我们可以用e超越数的事实来证明Ω是无理数。如果Ω是有理数,则存在整数pq,使得

所以

这样,e就是p代数数。但是,e实际上是超越数,所以Ω一定是无理数。

Ω实际上也是一个超越数,这可以由林德曼-魏尔斯特拉斯定理直接推出。如果Ω是代数数,exp(Ω)将会是超越数,exp−1(Ω)也是超越数。但这与它是代数数的假设矛盾。

参见

参考文献

外部链接