跳转到内容

−2

本页使用了标题或全文手工转换
维基百科,自由的百科全书
(重定向自平方倒數
-2
← −3 −2 −1 →
数表整数

<<  −10  −9‍  −8‍ −7 −6  −5‍ −4 −3 −2 −1 >>

命名
小寫負二
大寫負貳
序數詞第負二
negative second
識別
種類整數
性質
質因數分解一般不做質因數分解
高斯整數分解
因數1、2
絕對值2
相反数2
表示方式
-2
算筹
二进制−10(2)
三进制−2(3)
四进制−2(4)
五进制−2(5)
八进制−2(8)
十二进制−2(12)
十六进制−2(16)
高斯整數導航
2i
−1+i i 1+i
−2 −1 0 1 2
−1−i i 1−i
−2i

數學中,負二是距離原點兩個單位的負整數[1],记作−2[2]2[3],是2加法逆元相反數,介於−3−1之間,亦是最大的負偶數。除了少數探討整環質元素的情況外[4],一般不會將負二視為質數[5]

負二有時會做為冪次表達平方倒數,用於國際單位制基本單位的表示法中,如m s-2[6]。此外,在部份領域如軟體設計負一通常會作為函數的無效回傳值[7],類似地負二有時也會用於表達除負一外的其他無效情況[8],例如在整數數列線上大全中,負一作為不存在、負二作為此解是无穷[9][10]

性質

  • 負二為第二大的負整數[11][12]。最大的負整數為負一。因此部分量表會使用負二作為僅次於負一的分數或權重。[13]
  • 負二為負數中最大的偶數,同時也是負數中最大的單偶數日语単偶数
  • 負二為格萊舍χ數(OEIS數列A002171[14]
  • 負二為第6個擴充貝爾數[15](complementary Bell number,或稱Rao Uppuluri-Carpenter numbers )(OEIS數列A000587),前一個是1後一個是-9。[16]
  • 負二為最大的殭屍數[17],即位數和(首位含負號)的平方與自身的和大於零的負數[17]。前一個為-3(OEIS數列A328933)。所有負數中,只有26個整數有此種性質[17]
  • 負二為最大能使的負整數[18]
  • 負二能使二次域類数為1,亦即其整數環唯一分解整環[註 1][19]。而根據史塔克-黑格纳理論英语Stark–Heegner theorem,有此性質的負數只有9個[20][21][22],其對應的自然數稱為黑格纳数[23]
    • 此外負二也能使二次域成為簡單歐幾里得整環(simply Euclidean fields,或稱歐幾里得範數整環,Norm-Euclidean fields)[24]。有此性質的負數只有-11, -7, -3, -2, -1(OEIS數列A048981[25]。若放寬條件,則負十五也能列入[26][27]
  • 負二為從1開始使用加法、減法或乘法在2步內無法達到的最大負數[28]。1步內無法達到的最大負數是負一、3步內無法達到的最大負數是負四(OEIS數列A229686[28]。這個問題為直線問題英语straight-line program與加法、減法和乘法的結合[29],其透過整數的運算難度對NP = P與否在代數上進行探討[30]
  • 負二為2階的埃尔米特数英语Hermite number[31],即[32]
    • 同時,負二也是唯一一個素的[註 2]埃尔米特数。[33]
  • [34],同時滿足,即。此外,為2和3時結果也為負二[35]
  • 負二能使k(k+1)(k+2)為三角形數[36]。所有整數只有9個數有此種性質[37],而負二是有此種性質的最小整數。這9個整數分別為-2, -1, 0, 1, 4, 5, 9, 56和636(OEIS數列A165519[37]
  • 負二為立方體下闭集合欧拉示性数的最小值[38]

負二的因數

負二的擁有的因數若負因數也列入計算則與二的因數(含負因數)相同,為-2、-1、1、2。根據定義一般不對負數進行質因數分解,雖然能將提出來[39]計為,因此2可以視為負二的質因數,但不能作為負二的質因數分解結果。雖然不能對負二進行整數分解,由於負二是一個高斯整數,因此可以對負二進行高斯整數分解,結果為,其中高斯質數[40]虛數單位

負二的冪

負二的冪示意圖
一個可以代表負二的冪主值的圖形,藍色是實數部、橘色是虛數部、橫軸為、縱軸為。只有在為整數時為實數

負二的前幾次冪為 -2、4、-8、16、-32、64、-128 (OEIS數列A122803)正負震盪[41],其中正的部分為四的冪、負的部分與四的冪差負二倍[42],因此這種特性使得負二成為作為底數可以不使用負號、二補數等輔助方式表示全體實數的最大負數[41][43][44][45],並在1957年間有部分計算機採用負二為底之進位制的數字運算進行設計[46],類似地,使用2i則能表達複數[47]

負二的冪之和是一個发散几何级数。雖然其結果發散,但仍可以求得其廣義之和,其值為1/3[48][49]

= 1 − 2 + 4 − 8 + …

若考慮几何级数的計算公式,則有[50]

在首項a = 1且公比r = −2時,上述公式的結果為1/3。然而這個級數應為發散級數,其前幾項的和為[51]

1, -1, 3, -5, 11, -21, 43, -85, 171, -341....(OEIS數列A077925

這個級數雖然發散,然而歐拉對這個級數的結果給出了一個值,即1/3[52],而這個和稱為歐拉之和英语Euler summation[53]

負二次冪

數的負二次冪示意圖
一個可以代表數的負二次冪函數圖形。數的負二次冪亦可以用平方倒數來表示,即

若一數的冪為負二次,則其可以視為平方的倒數,這個部分用於函數也適用[54],而日常生活中偶爾會用于表示不帶除號的單位,如加速度一般計為m/s2,而在國際單位制基本單位的表示法中也可以計為 m s-2[6]

而平方倒數中較常討論的議題包括對任意實數而言,其平方倒數結果恆正、平方反比定律[56]、网格湍流衰減[57]以及巴塞尔问题[58]。其中巴塞尔问题指的是自然數的負二次方和(平方倒數和)會收斂並趨近於,即[59][58]

而這個值與黎曼ζ函數代入2的結果相同[60][61]

對任意實數而言,平方倒數的結果恆正。例如負二的平方倒數為四分之一。前幾個自然數的平方倒數為:

平方倒數 1 2 3 4 5 6 7 8 9 10
1
1 0.25 0.0625 0.04 0.0204081632....[註 3] 0.015625 0.01

負二的平方根

負二的平方根在定義虛數單位滿足後可透過等式得出,而對負二而言,則為[註 4][62][64][65][66]。而負二平方根的主值為[註 5]

表示方法

負二通常以在2前方加入負號表示[67],通常稱為「負二」或大寫「負貳」,但不應讀作「減二」[68],而在某些場合中,會以「零下二」[69][70]表達-2,例如在表達溫度時[71]

在二進制時,尤其是計算機運算,負數的表示通常會以二補數來表示[72],即將所有位數填上1,再向下減。此時,負二計為「......11111110(2)」,更具體的,4位元整數負二計為「1110(2)」;8位元整數負二計為「11111110(2)」;16位元整數負二計為「1111111111111110(2)[73]而在使用負號的表示法中,負二計為「-10(2)[74]

在其他領域中

正負二

正負二()是透過正負號表達正二與負二的方式,其可以用來表示4的平方根或二次方程的解,即。正負二比負二更常出現於文化中,例如一些音樂創作[79]或者紀錄片《±2℃》講述全球氣溫提升或降低兩度對環境可能造成的影響[80][81]

參見

註釋

  1. ^ 當d<0時,若的整數環為唯一分解整環,就表示的數字都只有一種因數分解方式,例如的整數環不是唯一分解整環,因為6可以以兩種方式在 中表成整數乘積:
  2. ^ 此指埃尔米特多项式费马伪素数
  3. ^ 7的平方倒數之循環節有42位,0.0204081632 6530612244 8979591836 7346938775 51 ... 參閱49的倒數
  4. ^ 4.0 4.1 bi-imaginary number system中,為負二、為二的情況[62]
  5. ^ 平方根的主值即取正的值,對於負二而言,即[註 4][62][64][65][66]

參考文獻

  1. ^ Catherine V. Jeremko. Just in time math (PDF). LearningExpress, LLC, New York. 2003: 20 [2020-03-26]. ISBN 1-57685-506-6. (原始内容存档 (PDF)于2020-03-26). 
  2. ^ Runesson Kempe, Ulla, Anna Lövström, and Björn Hellquist. Beyond the borders of the local: How “instructional products” from learning study can be shared and enhance student learning. International Journal for Lesson and Learning Studies (Emerald Group Publishing Limited). 2018, 7 (2): 111––123. 
  3. ^ Rick Billstein, Shlomo Libeskind, and Johnny W. Lott. A Problem Solving Approach to Mathematics for Elementary School Teachers. Pearson Education, Inc. 2010: 250. 
  4. ^ Sloane, N.J.A. (编). Sequence A061019 (Negate primes in factorization of n.). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  5. ^ Can negative numbers be prime?. primes.utm.edu. [2020-03-14]. (原始内容存档于2018-01-23). 
  6. ^ 6.0 6.1 International Bureau of Weights and Measures, The International System of Units (SI) (PDF) 8th, 2006, ISBN 92-822-2213-6 (英语) 
  7. ^ Knuth, Donald. The Art of Computer Programming, Volume 1: Fundamental Algorithms (second edition). Addison-Wesley. 1973: 213–214, also p. 631. ISBN 0-201-03809-9. (原始内容存档于2019-04-03). 
  8. ^ Yan, Michael and Leung, Eric and Han, Binna, The Joy Of Engineering (PDF), 2011-12 [2020-03-21], (原始内容存档 (PDF)于2020-03-21) 
  9. ^ Sloane, N.J.A. (编). Sequence A164793 (smallest number which has in its English name the letter "i" in the n-th position, -1 if such number no exist, -2 for infinite). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  10. ^ Sloane, N.J.A. (编). Sequence A164805. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  11. ^ Horwitz, Kenneth. Extending Fraction Placement from Segments to a Number Line. Children’s Reasoning While Building Fraction Ideas (Springer). 2017: 193––200. 
  12. ^ Haag, VH; et al, Introduction to Algebra (Part 2), ERIC, 1960 
  13. ^ aillon, L and Poon, Chi-Sun and Chiang, YH. Quantifying the waste reduction potential of using prefabrication in building construction in Hong Kong. Waste management (Elsevier). 2009, 29 (1): 309––320. 
  14. ^ Sloane, N.J.A. (编). Sequence A002171 (Glaisher's chi numbers). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  15. ^ Weisstein, Eric W. (编). Complementary Bell Number. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. [2020-03-12] (英语). 
  16. ^ Amdeberhan, Tewodros and De Angelis, Valerio and Moll, Victor H. Complementary Bell numbers: Arithmetical properties and Wilf’s conjecture. Advances in Combinatorics (Springer). 2013: 23––56. 
  17. ^ 17.0 17.1 17.2 Sloane, N.J.A. (编). Sequence A328933 (Zombie Numbers). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  18. ^ Sloane, N.J.A. (编). Sequence A088306 (Integers n with tan n > |n|). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  19. ^ Hardy, Godfrey Harold; Wright, E. M., An introduction to the theory of numbers Fifth, The Clarendon Press Oxford University Press: 213, 1979 [1938], ISBN 978-0-19-853171-5, MR 0568909 
  20. ^ Conway, John Horton; Guy, Richard K. The Book of Numbers. Springer. 1996: 224. ISBN 0-387-97993-X. 
  21. ^ H.M. Stark. On the “gap” in a theorem of Heegner. Journal of Number Theory. 1969-01, 1 (1): 16–27 [2020-06-19]. doi:10.1016/0022-314X(69)90023-7. (原始内容存档于2020-06-28) (英语). 
  22. ^ Weisstein, Eric W. (编). Heegner Number. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. [2020-03-14] (英语). 
  23. ^ Sloane, N.J.A. (编). Sequence A003173 (Heegner numbers: imaginary quadratic fields with unique factorization (or class number 1).). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  24. ^ Kyle Bradford and Eugen J. Ionascu, Unit Fractions in Norm-Euclidean Rings of Integers, arXiv, 2014 [2020-03-26], (原始内容存档于2020-03-26) 
  25. ^ LeVeque, William J. Topics in Number Theory, Volumes I and II. New York: Dover Publications. 2002: II:57,81 [1956]. ISBN 978-0-486-42539-9. Zbl 1009.11001. 
  26. ^ Kelly Emmrich and Clark Lyons. Norm-Euclidean Ideals in Galois Cubic Fields (PDF). 2017 West Coast Number Theory Conference. 2017-12-18 [2020-03-26]. (原始内容存档 (PDF)于2020-03-26). 
  27. ^ Sloane, N.J.A. (编). Sequence A296818 (Squarefree values of n for which the quadratic field Q[ sqrt(n) ] possesses a norm-Euclidean ideal class.). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  28. ^ 28.0 28.1 Sloane, N.J.A. (编). Sequence A229686 (The negative number of minimum absolute value not obtainable from 1 in n steps using addition, multiplication, and subtraction.). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  29. ^ Koiran, Pascal. Valiant’s model and the cost of computing integers. computational complexity (Springer). 2005, 13 (3-4): 131––146. 
  30. ^ Shub, Michael and Smale, Steve. On the intractability of Hilbert’s Nullstellensatz and an algebraic version of “NP= P?”. Duke Mathematical Journal. 1995, 81 (1): pp. 47-54. 
  31. ^ Sloane, N.J.A. (编). Sequence A067994 (Hermite numbers). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  32. ^ pahio. Hermite numbers. planetmath.org. 2013-03-22 [2020-03-14]. (原始内容存档于2015-09-19). 
  33. ^ Weisstein, Eric W. (编). Hermite Number. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. [2020-03-12] (英语). 
  34. ^ Sloane, N.J.A. (编). Sequence A005008. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  35. ^ Sloane, N.J.A. (编). Sequence A123642. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  36. ^ Richard K. Guy. "Figurate Numbers", §D3 in Unsolved Problems in Number Theory,. Problem Books in Mathematics 2nd ed. New York: Springer-Verlag. 1994: 148. ISBN 978-0387208602. 
  37. ^ 37.0 37.1 Sloane, N.J.A. (编). Sequence A165519 (Integers k for which k(k+1)(k+2) is a triangular number.). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  38. ^ Sloane, N.J.A. (编). Sequence A214283 (Smallest Euler characteristic of a downset on an n-dimensional cube). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  39. ^ Bard, G.V. Sage for Undergraduates. American Mathematical Society. 2015: 269. ISBN 9781470411114. LCCN 14033572. 
  40. ^ Dresden, Greg; Dymàček, Wayne M. Finding Factors of Factor Rings over the Gaussian Integers. The American Mathematical Monthly. 2005-08-01, 112 (7): 602. doi:10.2307/30037545. 
  41. ^ 41.0 41.1 CHAUNCEY H. WELLS. Using a negative base for number notation. The Mathematics Teacher (National Council of Teachers of Mathematics). 1963, 56 (2): 91––93. ISSN 0025-5769. 
  42. ^ Sloane, N.J.A. (编). Sequence A004171. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  43. ^ Knuth, Donald, The Art of Computer Programming, Volume 2 3rd: 204–205, 1998 . Knuth mentions both negabinary and negadecimal.
  44. ^ The negaternary system is discussed briefly in Marko Petkovsek. Ambiguous Numbers are Dense. The American Mathematical Monthly. 1990-05, 97 (5): 408 [2020-06-19]. doi:10.2307/2324393. (原始内容存档于2020-06-10). 
  45. ^ Sloane, N.J.A. (编). Sequence A122803 (Powers of -2). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  46. ^ Marczynski, R. W., "The First Seven Years of Polish Computing"页面存档备份,存于互联网档案馆), IEEE Annals of the History of Computing, Vol. 2, No 1, January 1980
  47. ^ Robert Braunwart. Negative and Imaginary Radices. School Science and Mathematics. 1965-04, 65 (4): 292–295 [2022-06-23]. doi:10.1111/j.1949-8594.1965.tb13422.x. (原始内容存档于2022-06-27) (英语). 
  48. ^ Leibniz, Gottfried. Probst, S.; Knobloch, E.; Gädeke, N. , 编. Sämtliche Schriften und Briefe, Reihe 7, Band 3: 1672–1676: Differenzen, Folgen, Reihen. Akademie Verlag. 2003: pp.205–207 [2020-03-20]. ISBN 3-05-004003-3. (原始内容存档于2013-10-17). 
  49. ^ Eberhard Knobloch. Beyond Cartesian limits: Leibniz's passage from algebraic to “transcendental” mathematics. Historia Mathematica. 2006-02, 33 (1): 113–131 [2020-06-19]. doi:10.1016/j.hm.2004.02.001. (原始内容存档于2019-10-14) (英语). 
  50. ^ Weisstein, Eric W. (编). Geometric Series. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. [2020-03-21] (英语). 
  51. ^ Sloane, N.J.A. (编). Sequence A077925. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  52. ^ Euler, Leonhard. Institutiones calculi differentialis cum eius usu in analysi finitorum ac doctrina serierum. 1755: 234 [2020-03-20]. (原始内容存档于2008-02-25). 
  53. ^ Korevaar, Jacob. Tauberian Theory: A Century of Developments. Springer. 2004: 325. ISBN 3-540-21058-X. 
  54. ^ 孙长军. 负二次幂函数与排列数的交错级数型线性微分方程. 山东理工大学学报(自然科学版) (连云港职业技术学院数学教研室). 2004, 05期. 
  55. ^ Alexandre Koyré. An Unpublished Letter of Robert Hooke to Isaac Newton. Isis. 1952-12, 43 (4): 312–337 [2020-06-19]. ISSN 0021-1753. doi:10.1086/348155 (英语). 
  56. ^ Hooke's letter to Newton of 6 Jan. 1680 (Koyré 1952:332)[55]
  57. ^ 中国近代航空工业史(1909-1949). 中国航空工业史丛书: 总史. 航空工业出版社. 2013 [2020-03-22]. ISBN 9787516502617. LCCN 2019437836. (原始内容存档于2020-11-30). 
  58. ^ 58.0 58.1 Havil, J. Gamma: Exploring Euler's Constant. Princeton, New Jersey: Princeton University Press. 2003: 37–42 (Chapter 4). ISBN 0-691-09983-9. 
  59. ^ Evaluating ζ(2) (PDF). secamlocal.ex.ac.uk. [2020-03-21]. (原始内容存档 (PDF)于2007-06-29). 
  60. ^ 許志農. 休閒數學的濫觴⋯中國的洛書 (PDF). lungteng.com.tw. [2020-03-21]. (原始内容存档 (PDF)于2020-03-21). 
  61. ^ 御坂01034. 巴塞尔问题(Basel problem)的多种解法. [2020-03-21]. (原始内容存档于2019-05-02). 
  62. ^ 62.0 62.1 62.2 Knuth, D.E. (1960). "bi-imaginary number system"[63]. Communications of the ACM. 3 (4): 247.
  63. ^ Donald E. Knuth. A imaginary number system. Communications of the ACM. 1960-04-01, 3 (4): 245–247 [2020-06-19]. doi:10.1145/367177.367233. 
  64. ^ 64.0 64.1 Knuth, Donald. Positional Number Systems. The art of computer programming. Volume 2 3rd. Boston: Addison-Wesley. 1998: 205. ISBN 0-201-89684-2. OCLC 48246681. 
  65. ^ 65.0 65.1 Slekys, Arunas G and Avižienis, Algirdas. A modified bi-imaginary number system. 1978 IEEE 4th Symposium onomputer Arithmetic (ARITH) (IEEE). 1978: 48––55. 
  66. ^ 66.0 66.1 Slekys, Arunas George, Design of complex number digital arithmetic units based on a modified bi-imaginary number system., University of California, Los Angeles, 1976 
  67. ^ Kreith, Kurt and Mendle, Al. Toward A Coherent Treatment of Negative Numbers. Journal of Mathematics Education at Teachers College. 2013, 4 (1): 53. 
  68. ^ Walter Noll, Mathematics should not be boring (PDF), CMU Math - Carnegie Mellon University: 13, 2003-03 [2020-03-26], (原始内容存档 (PDF)于2016-03-22) 
  69. ^ Tussy, A.S. and Koenig, D. Prealgebra. Cengage Learning. 2014: 136. ISBN 9781285966052. 
  70. ^ Bofferding, L.C. and Murata, A. and Goldman, S.V. and Okamoto, Y. and Schwartz, D. and Stanford University. School of Education. Expanding the Numerical Central Conceptual Structure: First Graders' Understanding of Integers. Stanford University. 2011: 169. 
  71. ^ 最冷情人節 酷寒襲芝 創77年低溫紀錄. 世界日報. 2020-02-14. 溫度降到華氏零下2度 [失效連結]
  72. ^ E.g. Section 4.2.1 in Intel 64 and IA-32 Architectures Software Developer's Manual, Signed integers are two's complement binary values that can be used to represent both positive and negative integer values., Volume 1: Basic Architecture, 2006-11 
  73. ^ 3.9. Two's Complement. Chapter 3. Data Representation. cs.uwm.edu. 2012-12-03 [2014-06-22]. (原始内容存档于2020-11-30). 
  74. ^ David J. Lilja and Sachin S. Sapatnekar, Designing Digital Computer Systems with Verilog, Cambridge University Press, 2005 online页面存档备份,存于互联网档案馆
  75. ^ Abigail Beall. A guide to planet-spotting. New Scientist. 2019-10, 244 (3253): 51 [2020-06-19]. doi:10.1016/S0262-4079(19)32025-1 (英语). 
  76. ^ A. Mallama, J.L. Hilton. Computing apparent planetary magnitudes for The Astronomical Almanac. Astronomy and Computing. 2018-10, 25: 10–24 [2020-06-19]. doi:10.1016/j.ascom.2018.08.002. (原始内容存档于2020-06-15) (英语). 
  77. ^ Current Time Zone. Brazil Considers Having Only One Time Zone. Time and Date. 2009-07-21 [2012-07-14]. (原始内容存档于2012-07-12). 
  78. ^ Macintyre, Jane E. (1994). Dictionary of Inorganic Compounds, Supplement 2页面存档备份,存于互联网档案馆). CRC Press. pp 25. ISBN 9780412491009.
  79. ^ Pace, Ian. Positive or negative 2. The Musical Times (JSTOR). 1998, 139 (1860): 4––15. 
  80. ^ 湯佳玲、劉力仁、陳珮伶. 正負2度C數據解讀錯誤 學者不背書. 自由時報. 2010-03-04 [2010-03-06]. (原始内容存档于2010-03-07) (中文(臺灣)). 
  81. ^ 朱立群. 環團科學舉證 ±2℃內容有誤. 中國時報. 2010-03-03 [2010-03-06]. (原始内容存档于2014-10-26) (中文(臺灣)).