富尔克森奖
富尔克森奖 | |
---|---|
授予对象 | 离散数学领域的杰出论文 |
国家/地区 | 美国 |
主办单位 | 国际数学优化学会 美国数学学会 |
奖励 | 1500美元 |
首次颁发 | 1979年 |
官方网站 | http://www.ams.org/profession/prizes-awards/ams-prizes/fulkerson-prize |
富尔克森奖(英語:Fulkerson Prize)是国际数学优化学会和美国数学学会联合设立的奖项,专门奖励离散数学领域的杰出论文。在国际数学优化学会每三年召开一次的大会上奖励至多三篇论文,奖金各1500美元。最初奖金来自于一个纪念基金。此纪念基金是由数学家戴尔伯特·雷·富尔克森的朋友们建立的、美国数学学会管理,用于激励富尔克森自己研究领域的杰出数学成果。目前奖金来自于国际数学优化学会管理的一笔捐赠资产。
获奖论文
- 1979年:
- 1982:
- D.B. Judin, 阿爾卡迪·內米羅夫斯基, Leonid Khachiyan, Martin Grötschel, 洛瓦兹·拉兹洛 和 Alexander Schrijver - 线性规划和组合优化中的椭球方法。[5][6] [7] [8]
- G. P. Egorychev和D. I. Falikman - 证明范德瓦尔登的猜想:所有元素都相等的矩阵在所有双随机矩阵中有着最小的积和式。[9][10]
- 1985:
- 1988:
- 愛娃·塔多斯 - 在强多项式时间内求解网络中的最小费用环流。[15]
- Narendra Karmarkar - 线性规划中的Karmarkar算法。[16]
- 1991:
- 1994:
- Louis Billera - 求出空间三角剖分上的分段多项式函数空间的基。[20]
- Gil Kalai - 在Hirsch猜想上的进展。[21]
- Neil Robertson, Paul Seymour和罗宾·托马斯 - 哈德维格猜想的6色情形。[22]
- 1997:
- Jeong Han Kim - 求出拉姆齐数R(3,t)的渐进增长率。[23]
- 2000:
- Michel X. Goemans和David P. Williamson - 基于半正定规划的近似算法。[24]
- Michele Conforti, Gérard Cornuéjols和Mendu Rammohan Rao - 在多项式时间内识别平衡逻辑矩阵的算法。[25][26]
- 2003:
- 2006:
- Manindra Agrawal, Neeraj Kayal 和 Nitin Saxena - AKS質數測試.[32][33][34]
- Mark Jerrum, 阿利斯泰尔·辛克莱尔 和 Eric Vigoda - 对积和式的近似计算。[35][34]
- Neil Robertson 和 Paul Seymour - Robertson-Seymour定理。.[36][34]
- 2009:
- 2012:
- 2015 :
- Francisco Santos Leal - 举出Hirsch猜想的一个反例。[45][46]
- 2018 :
- Robert Morris, 小早川美晴, Simon Griffiths, Peter Allen 和 Julia Böttcher - The chromatic thresholds of graphs
- Thomas Rothvoss - The Matching Polytope has Exponential Extension Complexity
参考资料
- ^ Mathematical Optimization Society. Mathematical Optimization Society. [2020-04-19]. (原始内容存档于2019-02-12).
- ^ Karp, Richard M. On the computational complexity of combinatorial problems. Networks. 1975, 5: 45–68. doi:10.1002/net.1975.5.1.45.
- ^ Appel, Kenneth; Haken, Wolfgang. Every planar map is four colorable, Part I: Discharging. Illinois Journal of Mathematics. 1977, 21: 429–490.
- ^ Seymour, Paul. The matroids with the max-flow min-cut property. Journal of Combinatorial Theory. 1977, 23: 189–222. doi:10.1016/0095-8956(77)90031-4.
- ^ Judin, D.B.; Nemirovski, Arkadi. Informational complexity and effective methods of solution for convex extremal problems. Ekonomika i Matematicheskie Metody. 1976, 12: 357–369.
- ^ Khachiyan, Leonid. A polynomial algorithm in linear programming. Akademiia Nauk SSSR. Doklady. 1979, 244: 1093–1096.
- ^ Leonid Khachiyan, professor, leading computer scientist, Boston Globe, May 5, 2005 [2020-04-19], (原始内容存档于2016-03-03).
- ^ Grötschel, Martin; Lovász, László; Schrijver, Alexander. The ellipsoid method and its consequences in combinatorial optimization. Combinatorica. 1981, 1: 169–197. doi:10.1007/bf02579273.
- ^ Egorychev, G. P. The solution of van der Waerden's problem for permanents. Akademiia Nauk SSSR. Doklady. 1981, 258: 1041–1044.
- ^ Falikman, D. I. A proof of the van der Waerden conjecture on the permanent of a doubly stochastic matrix. Matematicheskie Zametki. 1981, 29: 931–938.
- ^ Beck, Jozsef. Roth's estimate of the discrepancy of integer sequences is nearly sharp. Combinatorica. 1981, 1 (4): 319–325. doi:10.1007/bf02579452.
- ^ Lenstra, H. W.; Jr. Integer programming with a fixed number of variables. Mathematics of Operations Research. 1983, 8 (4): 538–548. doi:10.1287/moor.8.4.538.
- ^ Luks, Eugene M. Isomorphism of graphs of bounded valence can be tested in polynomial time. Journal of Computer and System Sciences. 1982, 25 (1): 42–65. doi:10.1016/0022-0000(82)90009-5.
- ^ U of O Computer Chief Gets Top Award, Eugene Register-Guard, August 10, 1985 [2020-04-19], (原始内容存档于2021-12-07).
- ^ Tardos, Éva. A strongly polynomial minimum cost circulation algorithm. Combinatorica. 1985, 5: 247–256. doi:10.1007/bf02579369.
- ^ Karmarkar, Narendra. A new polynomial-time algorithm for linear programming. Combinatorica. 1984, 4: 373–395. doi:10.1007/bf02579150.
- ^ Dyer, Martin E.; Frieze, Alan M.; Kannan, Ravindran. A random polynomial time algorithm for approximating the volume of convex bodies. Journal of the ACM. 1991, 38 (1): 1–17. doi:10.1145/102782.102783.
- ^ Alfred Lehman, "The width-length inequality and degenerate projective planes," W. Cook and P. D. Seymour (eds.), Polyhedral Combinatorics, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, volume 1, (American Mathematical Society, 1990) pp. 101-105.
- ^ Nikolai E. Mnev, "The universality theorems on the classification problem of configuration varieties and convex polytope varieties," O. Ya. Viro (ed.), Topology and Geometry-Rohlin Seminar, Lecture Notes in Mathematics 1346 (Springer-Verlag, Berlin, 1988) pp. 527-544.
- ^ Billera, Louis. Homology of smooth splines: Generic triangulations and a conjecture of Strang. Transactions of the American Mathematical Society. 1988, 310: 325–340. doi:10.2307/2001125.
- ^ Kalai, Gil. Upper bounds for the diameter and height of graphs of the convex polyhedra. Discrete and Computational Geometry. 1992, 8: 363–372. doi:10.1007/bf02293053.
- ^ Robertson, Neil; Seymour, Paul; Thomas, Robin. Hadwiger's conjecture for K_6-free graphs. Combinatorica. 1993, 13: 279–361. doi:10.1007/bf01202354.
- ^ Kim, Jeong Han, The Ramsey number R(3,t) has order of magnitude t2/log t, Random Structures & Algorithms, 1995, 7 (3): 173–207, MR 1369063, doi:10.1002/rsa.3240070302.
- ^ Goemans, Michel X.; Williamson, David P. Improved approximation algorithms for the maximum cut and satisfiability probelsm using semi-definite programming. Journal of the ACM. 1995, 42 (6): 1115–1145. doi:10.1145/227683.227684.
- ^ Michele Conforti, Gérard Cornuéjols, and M. R. Rao, "Decomposition of balanced matrices", Journal of Combinatorial Theory, Series B, 77 (2): 292–406, 1999.
- ^ MR Rao New Dean Of ISB, Financial Express, July 2, 2004 [2020-04-19], (原始内容存档于2022-03-19).
- ^ J. F. Geelen, A. M. H. Gerards and A. Kapoor, "The Excluded Minors for GF(4)-Representable Matroids," Journal of Combinatorial Theory, Series B, 79 (2): 247–2999, 2000.
- ^ 28.0 28.1 28.2 2003 Fulkerson Prize citation (页面存档备份,存于互联网档案馆), retrieved 2012-08-18.
- ^ Bertrand Guenin, "A characterization of weakly bipartite graphs," Journal of Combinatorial Theory, Series B, 83 (1): 112–168, 2001.
- ^ Satoru Iwata, Lisa Fleischer, Satoru Fujishige, "A combinatorial strongly polynomial algorithm for minimizing submodular functions," Journal of the ACM, 48 (4): 761–777, 2001.
- ^ Alexander Schrijver, "A combinatorial algorithm minimizing submodular functions in strongly polynomial time," Journal of Combinatorial Theory, Series B 80 (2): 346–355, 2000.
- ^ Manindra Agrawal, Neeraj Kayal and Nitin Saxena, "PRIMES is in P," Annals of Mathematics, 160 (2): 781–793, 2004.
- ^ Raghunathan, M. S., India as a player in Mathematics, The Hindu, June 11, 2009 [2020-04-19], (原始内容存档于2009-06-14).
- ^ 34.0 34.1 34.2 2006 Fulkerson Prize citation (页面存档备份,存于互联网档案馆), retrieved 2012-08-19.
- ^ Mark Jerrum, Alistair Sinclair and Eric Vigoda, "A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries," Journal of the ACM, 51 (4): 671–697, 2004.
- ^ Neil Robertson and Paul Seymour, "Graph Minors. XX. Wagner's conjecture," Journal of Combinatorial Theory, Series B, 92 (2): 325–357, 2004.
- ^ Chudnovsky, Maria; Robertson, Neil; Seymour, Paul; Thomas, Robin. The strong perfect graph theorem. Annals of Mathematics. 2006, 164: 51–229. arXiv:math/0212070 . doi:10.4007/annals.2006.164.51.
- ^ 38.0 38.1 38.2 2009 Fulkerson Prize citation (页面存档备份,存于互联网档案馆), retrieved 2012-08-19.
- ^ Spielman, Daniel A.; Teng, Shang-Hua. Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time. Journal of the ACM. 2004, 51: 385–463. arXiv:math/0212413 . doi:10.1145/990308.990310.
- ^ Hales, Thomas C. A proof of the Kepler conjecture. Annals of Mathematics. 2005, 162: 1063–1183.
- ^ Ferguson, Samuel P. Sphere Packings, V. Pentahedral Prisms. Discrete and Computational Geometry. 2006, 36: 167–204. doi:10.1007/s00454-005-1214-y.
- ^ Arora, Sanjeev; Rao, Satish; Vazirani, Umesh. Expander flows, geometric embeddings and graph partitioning. Journal of the ACM. 2009, 56: 1–37. doi:10.1145/1502793.1502794.
- ^ Johansson, Anders; Kahn, Jeff; Vu, Van H. Factors in random graphs. Random Structures and Algorithms. 2008, 33: 1–28. doi:10.1002/rsa.20224.
- ^ Lovász, László; Szegedy, Balázs. Limits of dense graph sequences. Journal of Combinatorial Theory. 2006, 96: 933–957. arXiv:math/0408173 . doi:10.1016/j.jctb.2006.05.002.
- ^ Santos, Francisco, A counterexample to the Hirsch conjecture, Annals of Mathematics, 2011, 176 (1): 383–412, MR 2925387, arXiv:1006.2814 , doi:10.4007/annals.2012.176.1.7
- ^ 2015 Fulkerson Prize citation (页面存档备份,存于互联网档案馆), retrieved 2015-07-18.