歐氏平面幾何中,婆羅摩笈多公式是用以計算圓內接四邊形的面積的公式,以印度數學家婆羅摩笈多之名命名。一般四邊形的面積公式請見布雷特施奈德公式。
基本形式
婆羅摩笈多公式的最簡單易記的形式,是圓內接四邊形面積計算。若圓內接四邊形的四邊長為a, b, c, d,則其面積為:
其中s為半周長:
证明
圆内接四边形的面积 = 的面积 + 的面积
但由于是圆内接四边形,因此。故。所以:
对和利用余弦定理,我们有:
代入(这是由于和是互补角),并整理,得:
把这个等式代入面积的公式中,得:
它是的形式,因此可以写成的形式:
引入,
两边开平方,得:
证毕。
更特殊情況
若圓O的圆內接四邊形的四邊長為a, b, c, d,且外切于圆C,則其面積為:
证明
由于四边形内接于圆O,所以:
其中p為半周長:
又因为四边形外切圆C,所以:
则:
同理:
,
,
综上:
证毕。
一般情況
布雷特施奈德公式
對一般四邊形的面積有布雷特施奈德公式,其敘述如下:
其中 是四邊形一對對角和的一半。
注意到不論取到哪一對對角 的值都一樣,因為四邊形的內角和是 ,故如果選取到的是另一對角,其對角和的一半是 。而 ,所以有 。
假設此時四邊形恰好四頂點共圓,由於圓內接四邊形的對角和為 ,因此 ,而且由 ,可推得此時 ,布雷特施奈德公式恰好退化回婆羅摩笈多公式。
柯立芝公式
另一個由柯立芝所證明的公式如下[1]:
其中 p 及 q 為四邊形對角線之長。在圓內接四邊形中,根據托勒密定理我們有,此公式退化回為婆羅摩笈多公式。
相關定理
海倫公式給出三角形的面積。它是婆羅摩笈多公式取的特殊情形。
婆羅摩笈多公式的基本形式和擴充形式,就像由勾股定理擴充至餘弦定理一般。
- ^ J. L. Coolidge, "A Historically Interesting Formula for the Area of a Quadrilateral", American Mathematical Monthly, 46 (1939) pp. 345-347.