跳转到内容

File:R'lyeh locations.png

页面内容不支持其他语言。
這個文件來自維基共享資源
维基百科,自由的百科全书

原始文件 (3,000 × 3,000像素,文件大小:7.68 MB,MIME类型:image/png


摘要

描述
English: Locations of R'Lyeh, a fictional city that appeared in the writings of H. P. Lovecraft (†1937). Lovecraft claims R'lyeh is located at 47°9′S 126°43′W in the southern Pacific Ocean. While August Derleth, a contemporary correspondent of Lovecraft and co-creator of the Cthulhu Mythos, placed R'lyeh at 49°51′S 128°34′W. Both locations are close to the Pacific pole of inaccessibility (the "Nemo" point, 48°52.6′S 123°23.6′W), a point in the ocean farthest from any land mass.
日期
来源

自己的作品

 
本PNG 位图使用Matplotlib创作.
作者 Nojhan
其他版本
This map, as well as other fictitious maps, is fictitious or too incorrect (i.e. due to anachronism) to be used in real-life contexts (contemporary or historic). It may have some visual elements that are similar to official maps such as colors or certain layout features, but they are NOT official and don't have any official recognition.

[[Category:]]

Source code

This image has been generated by the following source code in Python:

print "import modules...",
import sys
sys.stdout.flush()
import pickle
from mpl_toolkits.basemap import Basemap, shiftgrid, cm
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
from netCDF4 import Dataset
print "ok"

# Lovecraft: 47:9'S 126:43'W
lovecraft_lat = -47.9
lovecraft_lon = -126.43

# August Derleth: 49:51'S 128:34'W
derleth_lat = -49.51
derleth_lon = -128.34

# Nemo point: 48:52.6'S 123:23.6'W
nemo_lat = -48.526
nemo_lon = -123.236

# The Bloop:
# Appears to be way too far from the Nemo point to be interesting in a R'lyeh context
# bransfield_strait_lat=-63
# bransfield_strait_lon=-59
# ross_sea_lat = -75
# ross_sea_lon = -175
# cape_adare_lat = -71.17
# cape_adare_lon = -170.14

# Not necessary, because the default projection is ortho,
# but can be useful if you want another one.
def equi(m, centerlon, centerlat, radius, *args, **kwargs):
    """
    Drawing circles of a given radius around any point on earth, given the current projection.
    http://www.geophysique.be/2011/02/20/matplotlib-basemap-tutorial-09-drawing-circles/
    """
    glon1 = centerlon
    glat1 = centerlat
    X = []
    Y = []
    for azimuth in range(0, 360):
        glon2, glat2, baz = shoot(glon1, glat1, azimuth, radius)
        X.append(glon2)
        Y.append(glat2)
    X.append(X[0])
    Y.append(Y[0])

    #m.plot(X,Y,**kwargs) #Should work, but doesn't...
    X,Y = m(X,Y)
    plt.plot(X,Y,**kwargs)


def shoot(lon, lat, azimuth, maxdist=None):
    """Shooter Function
    Plotting great circles with Basemap, but knowing only the longitude,
    latitude, the azimuth and a distance. Only the origin point is known.
    Original javascript on http://williams.best.vwh.net/gccalc.htm
    Translated to python by Thomas Lecocq :
    http://www.geophysique.be/2011/02/19/matplotlib-basemap-tutorial-08-shooting-great-circles/
    """
    glat1 = lat * np.pi / 180.
    glon1 = lon * np.pi / 180.
    s = maxdist / 1.852
    faz = azimuth * np.pi / 180.

    EPS= 0.00000000005
    if ((np.abs(np.cos(glat1))<EPS) and not (np.abs(np.sin(faz))<EPS)):
        alert("Only N-S courses are meaningful, starting at a pole!")

    a=6378.13/1.852
    f=1/298.257223563
    r = 1 - f
    tu = r * np.tan(glat1)
    sf = np.sin(faz)
    cf = np.cos(faz)
    if (cf==0):
        b=0.
    else:
        b=2. * np.arctan2 (tu, cf)

    cu = 1. / np.sqrt(1 + tu * tu)
    su = tu * cu
    sa = cu * sf
    c2a = 1 - sa * sa
    x = 1. + np.sqrt(1. + c2a * (1. / (r * r) - 1.))
    x = (x - 2.) / x
    c = 1. - x
    c = (x * x / 4. + 1.) / c
    d = (0.375 * x * x - 1.) * x
    tu = s / (r * a * c)
    y = tu
    c = y + 1
    while (np.abs (y - c) > EPS):

        sy = np.sin(y)
        cy = np.cos(y)
        cz = np.cos(b + y)
        e = 2. * cz * cz - 1.
        c = y
        x = e * cy
        y = e + e - 1.
        y = (((sy * sy * 4. - 3.) * y * cz * d / 6. + x) *
              d / 4. - cz) * sy * d + tu

    b = cu * cy * cf - su * sy
    c = r * np.sqrt(sa * sa + b * b)
    d = su * cy + cu * sy * cf
    glat2 = (np.arctan2(d, c) + np.pi) % (2*np.pi) - np.pi
    c = cu * cy - su * sy * cf
    x = np.arctan2(sy * sf, c)
    c = ((-3. * c2a + 4.) * f + 4.) * c2a * f / 16.
    d = ((e * cy * c + cz) * sy * c + y) * sa
    glon2 = ((glon1 + x - (1. - c) * d * f + np.pi) % (2*np.pi)) - np.pi	

    baz = (np.arctan2(sa, b) + np.pi) % (2 * np.pi)

    glon2 *= 180./np.pi
    glat2 *= 180./np.pi
    baz *= 180./np.pi

    return (glon2, glat2, baz)


print "read in etopo5 topography/bathymetry"
url = 'http://ferret.pmel.noaa.gov/thredds/dodsC/data/PMEL/etopo5.nc'
etopodata = Dataset(url)

print "get data"

def topopickle(etopodata,name):
    import sys
    print "\t"+name+"...",
    sys.stdout.flush()
    filename = "rlyeh_"+name+".pickle"
    try:
        with open(filename,"r") as fd:
            print "load...",
            var = pickle.load(fd)
    except IOError:
        print "copy...",
        var = etopodata.variables[name][:]
        with open(filename,"w") as fd:
            print "dump...",
            pickle.dump(var,fd)
    print "ok"
    return var

topoin = topopickle(etopodata,"ROSE")
lons   = topopickle(etopodata,"ETOPO05_X")
lats   = topopickle(etopodata,"ETOPO05_Y")
print "shift data so lons go from -180 to 180 instead of 20 to 380...",
sys.stdout.flush()
topoin,lons = shiftgrid(180.,topoin,lons,start=False)
print "ok"


# create the figure and axes instances.
fig = plt.figure()
ax = fig.add_axes([0.1,0.1,0.8,0.8])

print "setup basemap"
# set up orthographic m projection with
# perspective of satellite looking down at 50N, 100W.
# use low resolution coastlines.
m = Basemap(projection='ortho',lat_0=nemo_lat,lon_0=nemo_lon,resolution='l')
m.bluemarble()

# Generic Mapping Tools colormaps:
# GMT_drywet, GMT_gebco, GMT_globe, GMT_haxby GMT_no_green, GMT_ocean, GMT_polar,
# GMT_red2green, GMT_relief, GMT_split, GMT_wysiwyg

print "transform to nx x ny regularly spaced native projection grid"
# step=5000.
step=10000.
nx = int((m.xmax-m.xmin)/step)+1; ny = int((m.ymax-m.ymin)/step)+1
topodat = m.transform_scalar(topoin,lons,lats,nx,ny)

print "plot topography/bathymetry as shadows"
from matplotlib.colors import LightSource
ls = LightSource(azdeg = 45, altdeg = 220, hsv_min_val=0.0, hsv_max_val=1.0,
        hsv_min_sat=0.0, hsv_max_sat=1.0)
# convert data to rgb array including shading from light source.
# (must specify color m)
rgb = ls.shade(topodat, cm.GMT_ocean)
im = m.imshow(rgb, alpha=0.15)

print "draw coastlines, country boundaries, fill continents"
m.drawcoastlines(linewidth=0.25)
# draw the edge of the map projection region
m.drawmapboundary(fill_color='white')
# draw lat/lon grid lines every 30 degrees.
m.drawmeridians(np.arange(  0,360,30), color="black" )
m.drawparallels(np.arange(-90,90 ,30), color="black" )

print "draw points"
psize=5
font = {'family' : 'serif',
        'weight' : 'normal',
        'size'   : 18}
matplotlib.rc('font', **font)

x,y = m( lovecraft_lon, lovecraft_lat )
m.scatter(x,y,psize,marker='o', color='white')
plt.text(x+50000,y+50000+50000, "Lovecraft", color='white')

x,y = m( derleth_lon, derleth_lat )
m.scatter(x,y,psize,marker='o',color='white')
plt.text(x+50000-120000,y+50000, "Derleth", color='white', horizontalalignment="right")

x,y = m( nemo_lon, nemo_lat )
m.scatter(x,y,psize*3,marker='+',color='#555555')
plt.text(x+50000+50000,y+50000-80000, "Nemo", color="#555555", verticalalignment="top")

equi(m, nemo_lon, nemo_lat, radius=2688, color="#555555" )

# x,y = m( bransfield_strait_lon, bransfield_strait_lat )
# m.scatter(x,y,psize*3,marker='+',color='#555555')
# plt.text(x+50000+20000,y+50000-80000, "bransfield_strait", color="#555555", verticalalignment="baseline")

# x,y = m( ross_sea_lon, ross_sea_lat )
# m.scatter(x,y,psize*3,marker='+',color='#555555')
# plt.text(x+50000+20000,y+50000-80000, "ross_sea", color="#555555", verticalalignment="baseline")

# x,y = m( cape_adare_lon, cape_adare_lat )
# m.scatter(x,y,psize*3,marker='+',color='#555555')
# plt.text(x+50000+20000,y+50000-80000, "cape_adare", color="#555555", verticalalignment="baseline")

plt.savefig("R'lyeh_locations.png", dpi=600, bbox_inches='tight')
# plt.show()
相机位置47° 54′ 00″ 南, 126° 25′ 48″ 西 Kartographer map based on OpenStreetMap.在以下服务上查看本图像和附近其他图像: OpenStreetMapinfo

许可协议

我,本作品著作权人,特此采用以下许可协议发表本作品:
w:zh:知识共享
署名 相同方式共享
您可以自由地:
  • 共享 – 复制、发行并传播本作品
  • 修改 – 改编作品
惟须遵守下列条件:
  • 署名 – 您必须对作品进行署名,提供授权条款的链接,并说明是否对原始内容进行了更改。您可以用任何合理的方式来署名,但不得以任何方式表明许可人认可您或您的使用。
  • 相同方式共享 – 如果您再混合、转换或者基于本作品进行创作,您必须以与原先许可协议相同或相兼容的许可协议分发您贡献的作品。

说明

添加一行文字以描述该文件所表现的内容

此文件中描述的项目

描繪內容

47°54'0"S, 126°25'48"W

文件历史

点击某个日期/时间查看对应时刻的文件。

日期/时间缩⁠略⁠图大小用户备注
当前2013年2月12日 (二) 20:492013年2月12日 (二) 20:49版本的缩略图3,000 × 3,000(7.68 MB)NojhanHigh resolution, draw the radius of the oceanic pole of inaccessibility, even more larger font, remove the bloop location, that appeared to be wrong.
2013年2月10日 (日) 23:012013年2月10日 (日) 23:01版本的缩略图946 × 945(1.21 MB)Nojhanlargest font possible
2013年2月10日 (日) 22:572013年2月10日 (日) 22:57版本的缩略图946 × 944(1.22 MB)XenonX3cropped
2013年2月10日 (日) 22:562013年2月10日 (日) 22:56版本的缩略图943 × 943(1.12 MB)Dennis BratlandCropped unnecessary whitespace. Displays was too small.
2013年2月10日 (日) 22:432013年2月10日 (日) 22:43版本的缩略图2,100 × 1,178(1.28 MB)NojhanSerif font.
2013年2月10日 (日) 22:322013年2月10日 (日) 22:32版本的缩略图2,100 × 1,178(1.28 MB)NojhanAdd the Bloop location, larger font size.
2013年2月10日 (日) 22:152013年2月10日 (日) 22:15版本的缩略图2,100 × 1,178(1.28 MB)NojhanUser created page with UploadWizard

以下页面使用本文件:

全域文件用途

以下其他wiki使用此文件:

元数据