File:Comparison gender life expectancy CIA factbook.svg
頁面內容不支援其他語言。
此 SVG 檔案的 PNG 預覽的大小:512 × 448 像素。 其他解析度:274 × 240 像素 | 549 × 480 像素 | 878 × 768 像素 | 1,170 × 1,024 像素 | 2,341 × 2,048 像素。
原始檔案 (SVG 檔案,表面大小:512 × 448 像素,檔案大小:127 KB)
摘要
描述Comparison gender life expectancy CIA factbook.svg |
English: Comparison of male and female life expectancy at birth for countries and territories as defined in the 2011 CIA Factbook, with selected bubbles labelled. Hover over a bubble to highlight it and show its data. The green line corresponds to equal female and male life expectancy. The apparent 3D volumes of the bubbles are linearly proportional to their population, i.e. their radii are linearly proportional to the cube root of the population. Data is from https://www.cia.gov/library/publications/the-world-factbook/fields/2102.html and https://www.cia.gov/library/publications/the-world-factbook/fields/2119.html . |
來源 | 自己的作品 |
作者 | Cmglee |
其他版本 | Derivative chart based on data of WHO: File:Comparison gender life expectancy WHO.svg |
SVG開發 InfoField |
Python script to fetch data and update data table
import re, os, urllib2, time, datetime, collections
data_oldss = [line.split('|') for line in '''\
-1|WORLD|69|67|71.1|7323187457|-
-20|EUROPEAN UNION|80.2|77.4|83.2|515052778|-
20|China|75.5|73.5|77.9|1373541278|ea
10|India|68.5|67.3|69.8|1266883598|as
25|USA|79.8|77.5|82.1|323995528|na
|Indonesia|72.7|70.1|75.5|258316051|ea
|Brazil|73.8|70.2|77.5|205823665|sa
|Pakistan|67.7|65.8|69.8|201995540|as
-20|Nigeria|53.4|52.4|54.5|186053386|af
|Bangladesh|73.2|71|75.4|156186882|as
-10|Russia|70.8|65|76.8|142355415|eu
1|Japan|85|81.7|88.5|126702133|ea
|Mexico|75.9|73.1|78.8|123166749|na
|Philippines|69.2|65.7|72.9|102624209|ea
|Ethiopia|62.2|59.8|64.7|102374044|af
|Vietnam|73.4|70.9|76.2|95261021|ea
|Egypt|72.7|71.4|74.2|94666993|af
|Iran|71.4|69.8|73.1|82801633|me
-15|DR Congo|57.3|55.8|58.9|81331050|af
|Germany|80.7|78.4|83.1|80722792|eu
|Turkey|74.8|72.5|77.3|80274604|me
|Thailand|74.7|71.5|78|68200824|ea
|France|81.8|78.7|85.1|66836154|eu
12|UK|80.7|78.5|83|64430428|eu
|Italy|82.2|79.6|85|62007540|eu
|Burma|66.6|64.2|69.2|56890418|ea
|South Africa|63.1|61.6|64.6|54300704|af
|Tanzania|62.2|60.8|63.6|52482726|af
|Korea, South|82.4|79.3|85.8|50924172|ea
|Spain|81.7|78.7|84.9|48563476|eu
|Colombia|75.7|72.6|79|47220856|sa
|Kenya|64|62.6|65.5|46790758|af
|Ukraine|71.8|67.1|76.9|44209733|eu
|Argentina|77.1|74|80.4|43886748|sa
|Algeria|76.8|75.5|78.2|40263711|af
|Poland|77.6|73.7|81.7|38523261|eu
|Uganda|55.4|54|56.9|38319241|af
|Iraq|74.9|72.6|77.2|38146025|me
|Sudan|64.1|62|66.3|36729501|af
|Canada|81.9|79.2|84.6|35362905|na
|Morocco|76.9|73.8|80.1|33655786|af
-15|Afghanistan|51.3|49.9|52.7|33332025|as
|Malaysia|75|72.2|78|30949962|ea
|Venezuela|75.8|72.7|78.9|30912302|sa
|Peru|73.7|71.7|75.9|30741062|sa
|Uzbekistan|73.8|70.7|77|29473614|ca
|Nepal|70.7|70.1|71.3|29033914|as
|Saudi Arabia|75.3|73.2|77.4|28160273|me
|Yemen|65.5|63.4|67.8|27392779|me
|Ghana|66.6|64.1|69.1|26908262|af
|Mozambique|53.3|52.6|54.1|25930150|af
|Korea, North|70.4|66.6|74.5|25115311|ea
|Madagascar|65.9|64.4|67.4|24430325|af
|Cameroon|58.5|57.1|59.9|24360803|af
|Cote d'Ivoire|58.7|57.5|59.9|23740424|af
|Taiwan|80.1|77|83.5|23464787|ea
|Australia|82.2|79.8|84.8|22992654|oc
|Sri Lanka|76.8|73.3|80.4|22235000|as
|Romania|75.1|71.7|78.8|21599736|eu
|Angola|56|54.8|57.2|20172332|af
|Burkina Faso|55.5|53.4|57.6|19512533|af
|Niger|55.5|54.3|56.8|18638600|af
|Malawi|61.2|59.2|63.2|18570321|af
|Kazakhstan|70.8|65.6|75.7|18360353|ca
|Chile|78.8|75.7|81.9|17650114|sa
|Mali|55.8|53.9|57.7|17467108|af
|Syria|74.9|72.5|77.4|17185170|me
|Netherlands|81.3|79.2|83.6|17016967|eu
|Ecuador|76.8|73.8|79.9|16080778|sa
|Cambodia|64.5|62|67.1|15957223|ea
|Zambia|52.5|50.8|54.1|15510711|af
|Guatemala|72.3|70.3|74.4|15189958|la
|Zimbabwe|58|57.3|58.7|14546961|af
|Senegal|61.7|59.7|63.8|14320055|af
|Rwanda|60.1|58.5|61.7|12988423|af
|Guinea|60.6|59|62.2|12093349|af
-1|Chad|50.2|49|51.5|11852462|af
|Belgium|81|78.4|83.7|11409077|eu
|Cuba|78.7|76.4|81.1|11179995|la
|Tunisia|76.1|74|78.4|11134588|af
|Burundi|60.5|58.8|62.3|11099298|af
|Bolivia|69.2|66.4|72.1|10969649|sa
|Portugal|79.3|76.1|82.8|10833816|eu
|Somalia|52.4|50.3|54.5|10817354|af
|Greece|80.5|77.9|83.3|10773253|eu
|Benin|61.9|60.5|63.3|10741458|af
|Czechia|78.6|75.7|81.8|10644842|eu
|Dominican Republic|78.1|75.9|80.5|10606865|la
|Haiti|63.8|61.2|66.4|10485800|la
|Sweden|82.1|80.2|84.1|9880604|eu
|Hungary|75.9|72.2|79.8|9874784|eu
|Azerbaijan|72.5|69.5|75.8|9872765|me
-17|Belarus|72.7|67.2|78.6|9570376|eu
|Honduras|71.1|69.5|72.8|8893259|la
|Austria|81.5|78.9|84.3|8711770|eu
|Tajikistan|67.7|64.6|71|8330946|ca
|Jordan|74.6|73.2|76.1|8185384|me
|Switzerland|82.6|80.3|85|8179294|eu
|Israel|82.4|80.6|84.4|8174527|me
|Togo|65|62.3|67.7|7756937|af
|Hong Kong|82.9|80.3|85.8|7167403|ea
|Bulgaria|74.5|71.2|78|7144653|eu
|Serbia|75.5|72.6|78.5|7143921|eu
|Laos|64.3|62.2|66.4|7019073|ea
|Paraguay|77.2|74.5|80|6862812|sa
|Papua New Guinea|67.2|65|69.5|6791317|ea
|Libya|76.5|74.7|78.3|6541948|af
|Lebanon|77.6|76.3|78.9|6237738|me
|El Salvador|74.7|71.4|78.1|6156670|la
|Sierra Leone|58.2|55.6|60.9|6018888|af
|Nicaragua|73.2|71.1|75.5|5966798|la
|United Arab Emirates|77.5|74.8|80.2|5927482|me
|Eritrea|64.9|62.4|67.5|5869869|af
10|Singapore|85|82.3|87.8|5781728|ea
|Kyrgyzstan|70.7|66.5|75.1|5727553|ca
|Denmark|79.4|77|82|5593785|eu
|Central African Republic|52.3|51|53.7|5507257|af
|Finland|80.9|77.9|84|5498211|eu
|Slovakia|77.1|73.5|80.9|5445802|eu
|Turkmenistan|70.1|67.1|73.3|5291317|ca
|Norway|81.8|79.8|83.9|5265158|eu
|Ireland|80.8|78.5|83.2|4952473|eu
|Georgia|76.2|72.1|80.6|4928052|me
|Costa Rica|78.6|75.9|81.4|4872543|la
|Congo, Republic of the|59.3|58.1|60.6|4852412|af
|New Zealand|81.2|79.1|83.3|4474549|oc
|Croatia|75.9|72.7|79.2|4313707|eu
|Liberia|59|57.3|60.8|4299944|af
|Bosnia and Herzegovina|76.7|73.7|80|3861912|eu
|Panama|78.6|75.8|81.6|3705246|la
|Mauritania|63|60.7|65.4|3677293|af
|Puerto Rico|79.4|75.8|83.1|3578056|la
|Moldova|70.7|66.9|74.8|3510485|eu
|Oman|75.5|73.5|77.5|3355262|me
|Uruguay|77.2|74.1|80.5|3351016|sa
|Armenia|74.6|71.4|78.3|3051250|me
|Albania|78.3|75.7|81.2|3038594|eu
|Mongolia|69.6|65.4|74.1|3031330|ea
|Jamaica|73.6|72|75.3|2970340|la
|Lithuania|74.9|69.5|80.6|2854235|eu
|Kuwait|78|76.6|79.4|2832776|me
|West Bank|75|73|77.1|2697687|me
|Namibia|63.6|62.1|65.1|2436469|af
|Qatar|78.7|76.7|80.8|2258283|me
1|Botswana|54.5|56.3|52.6|2209208|af
|Macedonia|76.2|73.6|79|2100025|eu
|Gambia, The|64.9|62.5|67.3|2009648|af
|Slovenia|78.2|74.6|82|1978029|eu
|Latvia|74.5|69.9|79.3|1965686|eu
|Lesotho|53|52.9|53.1|1953070|af
-2|Guinea-Bissau|50.6|48.6|52.7|1759159|af
|Gaza Strip|73.9|72.3|75.7|1753327|me
|Gabon|52.1|51.6|52.5|1738541|af
1|Swaziland|51.6|52.2|51|1451428|af
|Bahrain|78.9|76.7|81.1|1378904|me
|Mauritius|75.6|72.2|79.2|1348242|af
|Timor-Leste|68.1|66.5|69.7|1261072|ea
|Estonia|76.7|71.9|81.7|1258545|eu
|Trinidad and Tobago|72.9|69.9|75.9|1220479|la
|Cyprus|78.7|75.8|81.6|1205575|eu
|Fiji|72.7|70|75.5|915303|oc
|Djibouti|63.2|60.7|65.8|846687|af
|Comoros|64.2|61.9|66.6|794678|af
|Equatorial Guinea|64.2|63.1|65.4|759451|af
|Bhutan|70.1|69.1|71.1|750125|as
|Guyana|68.4|65.4|71.5|735909|sa
|Solomon Islands|75.3|72.7|78.1|635027|oc
-10|Macau|84.5|81.6|87.6|597425|ea
|Western Sahara|63|60.7|65.4|587020|af
|Suriname|72.2|69.8|74.8|585824|sa
|Luxembourg|82.3|79.8|84.9|582291|eu
|Cabo Verde|72.1|69.8|74.5|553432|af
|Brunei|77.2|74.8|79.6|436620|ea
|Malta|80.4|78|82.8|415196|eu
|Maldives|75.6|73.3|78|392960|as
|Belize|68.7|67.2|70.4|353858|la
|Iceland|83|80.9|85.3|335878|eu
|Bahamas, The|72.4|70|74.8|327316|la
|Barbados|75.3|73|77.7|291495|la
|French Polynesia|77.2|74.9|79.6|285321|oc
|Vanuatu|73.4|71.8|75.1|277554|oc
|New Caledonia|77.7|73.7|81.9|275355|oc
|Samoa|73.7|70.8|76.8|198926|oc
|Sao Tome and Principe|64.9|63.6|66.3|197541|af
|Saint Lucia|77.8|75|80.7|164464|la
|Guam|79.1|76.1|82.4|162742|oc
|Curacao|78.3|76|80.7|149035|la
|Aruba|76.8|73.7|79.9|113648|la
|Grenada|74.3|71.7|77.1|111219|la
|Kiribati|66.2|63.7|68.8|106925|oc
|Tonga|76.2|74.7|77.8|106513|oc
|Micronesia, Federated States of|72.9|70.8|75|104719|oc
|Virgin Islands|80|77|83.2|102951|la
|Saint Vincent and the Grenadines|75.3|73.3|77.4|102350|la
|Jersey|81.9|79.4|84.5|98069|eu
|Antigua and Barbuda|76.5|74.4|78.8|93581|la
|Seychelles|74.7|70.2|79.4|93186|af
|Isle of Man|81.2|79.5|83|88195|eu
|Andorra|82.8|80.6|85.1|85660|eu
|Dominica|77|74|80.1|73757|la
|Marshall Islands|73.1|70.9|75.4|73376|oc
|Bermuda|81.3|78.1|84.5|70537|na
|Guernsey|82.5|79.9|85.4|66297|eu
|Greenland|72.4|69.7|75.2|57728|na
|Cayman Islands|81.2|78.5|84|57268|la
|American Samoa|75.4|72.4|78.5|54194|oc
|Northern Mariana Islands|78|75.3|80.8|53467|oc
|Saint Kitts and Nevis|75.7|73.3|78.2|52329|la
|Turks and Caicos Islands|79.8|77.1|82.7|51430|la
|Faroe Islands|80.4|77.8|83.1|50456|eu
|Sint Maarten|78.1|75.8|80.6|41486|la
|Liechtenstein|81.9|79.7|84.6|37937|eu
|British Virgin Islands|78.6|77.2|80.1|34232|la
|San Marino|83.3|80.7|86.1|33285|eu
-1|Monaco|89.5|85.6|93.5|30581|eu
|Gibraltar|79.4|76.6|82.5|29328|eu
|Palau|73.1|69.9|76.5|21347|oc
|Anguilla|81.4|78.8|84.1|16752|la
|Wallis and Futuna|79.7|76.7|82.8|15664|oc
|Tuvalu|66.5|64.3|68.8|10959|oc
|Nauru|67.1|63|70.5|9591|oc
|Cook Islands|75.8|73|78.8|9556|oc
|Saint Helena, Ascension, and Tristan da Cunha|79.5|76.6|82.6|7795|af
|Saint Pierre and Miquelon|80.5|78.2|83|5595|na
1|Montserrat|74.4|75.8|72.9|5267|la
|Falkland Islands (Islas Malvinas)|77.9|75.6|79.6|2931|sa
|Svalbard|NA|NA|NA|2667|eu
|Norfolk Island|NA|NA|NA|2210|oc
|Christmas Island|NA|NA|NA|2205|oc
|Tokelau|NA|NA|NA|1285|oc
|Niue|NA|NA|NA|1190|oc
|Cocos (Keeling) Islands|NA|NA|NA|596|oc
|Pitcairn Islands|NA|NA|NA|54|oc
'''.strip().split('\n')]
# do_refresh_cache = True
def read_url(url, headers={}, path_cache=None, is_verbose=True):
if (path_cache is None):
file_cache = os.path.basename(url)
path_cache = os.path.join('%s.cache' % (os.path.splitext(__file__)[0]),
file_cache if (len(file_cache) > 0) else
'%s.htm' % (os.path.basename(url.rstrip('/'))))
if (('do_refresh_cache' in globals() and do_refresh_cache) or
(not os.path.isfile(path_cache))):
request = urllib2.Request(url, headers=headers)
try: html = urllib2.urlopen(request).read()
except urllib2.HTTPError as e: html = ''; print(e)
try: os.makedirs(os.path.dirname(path_cache))
except OSError: pass
with open(path_cache, 'wb') as f_html: f_html.write(html)
if (is_verbose): print('%s > %s' % (url, path_cache))
time.sleep(1) ## avoid rate-limit-exceeded error
else:
with open(path_cache) as f_html: html = f_html.read()
if (is_verbose): print('< %s' % (path_cache))
try: html = html.decode('utf-8')
except UnicodeDecodeError: pass
return html
def fmt(string): ## string.format(**vars()) using tags {expression!format} by CMG Lee
def f(tag): i_sep = tag.rfind('!'); return (re.sub('\.0+$', '', str(eval(tag[1:-1])))
if (i_sep < 0) else ('{:%s}' % tag[i_sep + 1:-1]).format(eval(tag[1:i_sep])))
return (re.sub(r'(?<!{){[^{}]+}', lambda m:f(m.group()), string)
.replace('{{', '{').replace('}}', '}'))
def append(obj, string): return obj.append(fmt(string))
def format_tab(*arg): return '\t'.join([str(el) for el in (arg if len(arg) > 1 else arg[0])])
def tabbify(cellss, separator='|'):
cellpadss = [list(rows) + [''] * (len(max(cellss, key=len)) - len(rows)) for rows in cellss]
fmts = ['%%%ds' % (max([len(str(cell)) for cell in cols])) for cols in zip(*cellpadss)]
return '\n'.join([separator.join(fmts) % tuple(rows) for rows in cellpadss])
def hex_rgb(colour): ## convert [#]RGB to #RRGGBB and [#]RRGGBB to #RRGGBB
return '#%s' % (colour if len(colour) > 4 else ''.join([c * 2 for c in colour])).lstrip('#')
def try_int_float(field):
try: return int(field)
except:
try: return float(field)
except: return field
def roundm(x, multiple=1):
try: x[0]; return [roundm(element, multiple) for element in x] ## x[0] checks if x is iterable
except: return int(math.floor(float(x) / multiple + 0.5)) * multiple
def findall(regex, string):
return re.findall(regex, string, flags=re.I|re.DOTALL)
def sub(regex_replace, regex_with, string):
return str(re.sub(regex_replace, regex_with, string, flags=re.DOTALL).strip())
def make_serial(name): return sub(r'[^a-z]', '', name.lower())
def make_table(datass):
return '\n'.join(['|'.join([str(data) for data in datas]) for datas in datass])
data_newss = {}
html_expectancy = read_url('http://cia.gov/library/publications/resources/the-world-factbook/fields/355.html')
html_expectancyss = findall(r'(<td.+?</td>)\s*(<td.+?</td>)', html_expectancy)
for html_expectancys in html_expectancyss:
html_divs = findall(r'<div.+?</div>', html_expectancys[1])
name = sub(r'<.*?>', '', html_expectancys[0])
serial = make_serial(name)
# expectancy_male = None
# expectancy_female = None
# try: expectancy_male = float(findall(r'[\d.]+(?= years)', html_divs[1])[0])
# except Exception: pass
# try: expectancy_female = float(findall(r'[\d.]+(?= years)', html_divs[2])[0])
# except Exception: pass
# if (not serial in data_newss): data_newss[serial] = {}
# data_newss[serial]['male' ] = expectancy_male
# data_newss[serial]['female'] = expectancy_female
try:
expectancy_overall = float(findall(r'(?:[\d.]+(?= years)|\d+\.\d+)', html_divs[0])[0])
expectancy_male = float(findall(r'(?:[\d.]+(?= years)|\d+\.\d+)', html_divs[1])[0])
expectancy_female = float(findall(r'(?:[\d.]+(?= years)|\d+\.\d+)', html_divs[2])[0])
if (not serial in data_newss): data_newss[serial] = {}
data_newss[serial]['overall'] = expectancy_overall
data_newss[serial]['male' ] = expectancy_male
data_newss[serial]['female' ] = expectancy_female
except Exception: pass
html_population = read_url('http://cia.gov/library/publications/resources/the-world-factbook/fields/335.html')
html_populationss = findall(r'(<td.+?</td>)\s*(<td.+?</td>)', html_population)
for html_populations in html_populationss:
name = sub(r'<.*?>', '', html_populations[0])
serial = make_serial(name)
# population = None
# if (not 'no indigenous' in html_populations[1]):
# try: population = int(sub(',','',findall(r'[\d,]+', html_populations[1])[0]))
# except Exception: pass
# if (not serial in data_newss): data_newss[serial] = {}
# data_newss[serial]['population'] = population
if (not 'no indigenous' in html_populations[1]):
try:
population = int(sub(',','',findall(r'[\d,]+', html_populations[1])[0]))
if (not serial in data_newss): data_newss[serial] = {}
data_newss[serial]['name'] = name
data_newss[serial]['population'] = population
except Exception: pass
outss = []
for serial in sorted(data_newss):
data_news = data_newss[serial]
try: outss.append([serial, data_news['name'], data_news['population'],
data_news['overall'], data_news['male'], data_news['female']])
# data_news['population'] if ('population' in data_news) else None,
# data_news['male'] if ('male' in data_news) else None,
# data_news['female'] if ('female' in data_news) else None])
except Exception: pass
# print(data_newss.pop(serial))
# print(tabbify(outss))
outss = []
# print(tabbify(data_oldss))
map_keeps = {'usa':'unitedstates', 'uk':'unitedkingdom', 'drcongo':'congodemocraticrepublicofthe'}
map_changes = {'swaziland':'eswatini'}
for data_olds in data_oldss:
name = data_olds[1]
serial = make_serial(name)
data_news = None
try:
if (serial in map_keeps): serial = map_keeps[serial]
if (serial in map_changes):
serial = map_changes[serial]
data_news = data_newss[serial]
name = data_news['name']
else:
data_news = data_newss[serial]
except Exception: pass
outss.append([data_olds[0],
name,
# data_news['name' ] if ('name' in data_news) else 'NA',
data_news['overall' ] if ('overall' in data_news) else 'NA',
data_news['male' ] if ('male' in data_news) else 'NA',
data_news['female' ] if ('female' in data_news) else 'NA',
data_news['population'] if ('population' in data_news) else 'NA',
data_olds[6]])
# outss.append(data_olds)
if (name != data_news['name']): print(name, data_news['name'])
# print(tabbify(outss))
outss = outss[:2] + sorted(outss[2:], key=lambda lines:lines[5], reverse=True)
dir_cache = '%s.cache' % (os.path.splitext(__file__)[0])
with open(os.path.join(dir_cache, 'old.txt'), 'w') as f: f.write(make_table(data_oldss))
with open(os.path.join(dir_cache, 'new.txt'), 'w') as f: f.write(make_table(outss))
授權條款
我,本作品的著作權持有者,決定用以下授權條款發佈本作品:
此檔案採用創用CC 姓名標示-相同方式分享 3.0 未在地化版本授權條款。
- 您可以自由:
- 分享 – 複製、發佈和傳播本作品
- 重新修改 – 創作演繹作品
- 惟需遵照下列條件:
- 姓名標示 – 您必須指名出正確的製作者,和提供授權條款的連結,以及表示是否有對內容上做出變更。您可以用任何合理的方式來行動,但不得以任何方式表明授權條款是對您許可或是由您所使用。
- 相同方式分享 – 如果您利用本素材進行再混合、轉換或創作,您必須基於如同原先的相同或兼容的條款,來分布您的貢獻成品。
已授權您依據自由軟體基金會發行的無固定段落、封面文字和封底文字GNU自由文件授權條款1.2版或任意後續版本,對本檔進行複製、傳播和/或修改。該協議的副本列在GNU自由文件授權條款中。http://www.gnu.org/copyleft/fdl.htmlGFDLGNU Free Documentation Licensetruetrue |
您可以選擇您需要的授權條款。
在此檔案描寫的項目
描繪內容
image/svg+xml
130,119 位元組
448 像素
512 像素
檔案歷史
點選日期/時間以檢視該時間的檔案版本。
日期/時間 | 縮圖 | 尺寸 | 使用者 | 備註 | |
---|---|---|---|---|---|
目前 | 2019年2月27日 (三) 22:21 | 512 × 448(127 KB) | Cmglee | Update with 2018 data. | |
2017年6月19日 (一) 19:59 | 512 × 448(127 KB) | Cmglee | Update with 2016 data. | ||
2016年2月7日 (日) 01:42 | 512 × 512(128 KB) | Cmglee | Add interactivity using CSS and title tag. | ||
2015年6月28日 (日) 04:34 | 512 × 512(95 KB) | Leftcry | Fix | ||
2015年6月25日 (四) 03:49 | 512 × 512(95 KB) | Leftcry | Europe classification | ||
2011年11月20日 (日) 21:26 | 512 × 512(59 KB) | Cmglee | Update colours. | ||
2011年11月20日 (日) 20:21 | 512 × 512(59 KB) | Cmglee | {{Information |Description ={{en|1=Comparison of male and female life expectancy at birth for countries and territories as defined in the 2011 CIA Factbook, with selected bubbles labelled. The dotted line corresponds to equal female and male life expec |
檔案用途
下列頁面有用到此檔案:
全域檔案使用狀況
以下其他 wiki 使用了這個檔案:
- ar.wikipedia.org 的使用狀況
- as.wikipedia.org 的使用狀況
- be-tarask.wikipedia.org 的使用狀況
- bn.wikipedia.org 的使用狀況
- bs.wikipedia.org 的使用狀況
- el.wikipedia.org 的使用狀況
- en.wikipedia.org 的使用狀況
- gl.wikipedia.org 的使用狀況
- he.wikipedia.org 的使用狀況
- id.wikipedia.org 的使用狀況
- it.wikipedia.org 的使用狀況
- ja.wikipedia.org 的使用狀況
- ro.wikipedia.org 的使用狀況
- sh.wikipedia.org 的使用狀況
- sr.wikipedia.org 的使用狀況
- th.wikipedia.org 的使用狀況
- uk.wikipedia.org 的使用狀況
- uz.wikipedia.org 的使用狀況
- wikimania2016.wikimedia.org 的使用狀況
- zh-yue.wikipedia.org 的使用狀況
詮釋資料
此檔案中包含其他資訊,這些資訊可能是由數位相機或掃描器在建立或數位化過程中所新增的。若檔案自原始狀態已被修改,一些詳細資料可能無法完整反映出已修改的檔案。
簡稱 | comparison gender life expectancy CIA factbook |
---|---|
影像標題 | Comparison of male and female life expectancy at birth (2018 estimate) for countries and territories as defined in the CIA Factbook, with selected bubbles labelled, by CMG Lee. Hover over a bubble to highlight it and show its data. The dotted line corresponds to equal female and male life expectancy. The apparent 3D volumes of the bubbles are linearly proportional to their populations, i.e. their radii are linearly proportional to the cube root of the populations. Data is from https://www.cia.gov/library/publications/resources/the-world-factbook/fields/355.html and https://www.cia.gov/library/publications/resources/the-world-factbook/fields/335.html . |
寬度 | 100% |
高度 | 100% |
隱藏分類: