在數學中,模λ函數[1],又稱橢圓λ函數,是定義於複上半平面H的全純函數,具有高度對稱性。該函數在同餘子群Γ(2)的對H的分式線性作用下不變,亦是商空間Γ(2)\H上函數域的生成元;也就是說,這個函數是模曲線X(2)的主模曲線。特別地,該函數沿實軸平移兩個單位,函數值不改變,即[2]。在任意點上,其值可用於描述橢圓曲線對其投影線的分歧覆蓋映射的四個分支點之交比,式中[-1]為E對原點的反演變換生成的自同構群。
模λ函數具有如下的傅立葉展開式:
- ,其中。 A115977
模性質
模λ函數在由下式生成的模群的主同餘子群Γ(2)的作用下保持不變:[3]:115
模群自身的生成元則以如下方式作用於模λ函數之上:[3]:109
與其他橢圓函數的關聯
λ函數為亞可比模量(Jacobi modulus)的平方[3]:108,即;亦可以戴德金η函數與Θ函數表達:
其中:[3]:63
λ函數亦可以魏爾斯特拉斯橢圓函數在定義其的格子的棱邊中點和面心處的函數值表達;若令為滿足的基本週期二元組:
則有:[3]:108
魏爾斯特拉斯函數在上述三點的值各不相同,這意味著λ函數取不到值0或1。[3]:108
其與克萊因j函數的關係為:[3]:117[4]
橢圓模量
有一個與模λ函數相關的函數:λ*(x)函數,其給出了橢圓模量k的值。第一類完全橢圓積分K(k)與其互補對應的關係如下:
λ*(x)函數的函數值可透過下列式子計算:
其中為Θ函數。
此外λ函數與λ*(x)函數存在下列關聯:
所有的有理數r,與都可以視為橢圓積分的奇異值,可透過有限的伽馬函數表示[5]。
參見
參考文獻
- ^ 日本數學會. 数学百科辞典. 科學出版社. 1984 [2021-07-15]. (原始內容存檔於2021-10-23).
- ^ Weisstein, Eric W. (編). Elliptic Lambda Function. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英語).
- ^ 3.0 3.1 3.2 3.3 3.4 3.5 3.6 Chandrasekharan, K., Elliptic Functions, Grundlehren der mathematischen Wissenschaften 281, Springer-Verlag: 108–121, 1985, ISBN 3-540-15295-4, Zbl 0575.33001
- ^ Rankin, Robert A., Modular Forms and Functions, Cambridge University Press: 226–228, 1977, ISBN 0-521-21212-X, Zbl 0376.10020
- ^ Selberg, A.; Chowla, S. "On Epstein's Zeta-Function.". J. reine angew. Math. 1967, 227: 86–110.