哈密頓算符
量子力學中,哈密頓算符(英語:Hamiltonian,縮寫符號:H或) 為一個可觀測量,對應於系統的總能量。一如其他所有算符,哈密頓算符的譜為測量系統總能是所有可能結果的集合。如同其他自伴算符,哈密頓算符的譜可以透過譜測度(spectral measure)被分解,成為純點(pure point)、絕對連續(absolutely continuous)、奇異點(singular)三種部分。純點譜與本徵向量相應,而後者又對應到系統的束縛態(bound states)。絕對連續譜則對應到自由態(free states)。奇異點譜則很有趣地由物理學上不可能的結果所組成。舉例來說,考慮有限深方形阱的情形,其許可了具有離散負能量的束縛態,以及具有連續正能量的自由態。
哈密頓算符產生了量子態的時間演化。若 為在時間 t 的系統狀態,
- 。
其中 為約化普朗克常數。此方程式為薛丁格方程式。(其與哈密頓-雅可比方程式具有相同形式,也因為此,H 冠有哈密頓之名。)若給定系統在某一初始時間(t = 0)的狀態,我們可以積分得到接下來任何時間的系統狀態。其中特別的是,若 H 與時間無關,則
- 。
相關條目
這是一篇物理學小作品。您可以透過編輯或修訂擴充其內容。 |