跳转到内容

File:Comparison gender life expectancy CIA factbook.svg

页面内容不支持其他语言。
这个文件来自维基共享资源
维基百科,自由的百科全书

原始文件 (SVG文件,尺寸为512 × 448像素,文件大小:127 KB)


摘要

描述
English: Comparison of male and female life expectancy at birth for countries and territories as defined in the 2011 CIA Factbook, with selected bubbles labelled. Hover over a bubble to highlight it and show its data. The green line corresponds to equal female and male life expectancy. The apparent 3D volumes of the bubbles are linearly proportional to their population, i.e. their radii are linearly proportional to the cube root of the population. Data is from https://www.cia.gov/library/publications/the-world-factbook/fields/2102.html and https://www.cia.gov/library/publications/the-world-factbook/fields/2119.html .
来源 自己的作品
作者 Cmglee
其他版本 Derivative chart based on data of WHO: File:Comparison gender life expectancy WHO.svg
SVG开发
InfoField
 
SVG的源代码为有效代码.
 
本旗幟使用未知SVG工具创作。
 
 此SVG 旗幟使用了内嵌文本,可以使用任何文本编辑器轻松翻译

Python script to fetch data and update data table

import re, os, urllib2, time, datetime, collections

data_oldss = [line.split('|') for line in '''\
-1|WORLD|69|67|71.1|7323187457|-
-20|EUROPEAN UNION|80.2|77.4|83.2|515052778|-
20|China|75.5|73.5|77.9|1373541278|ea
10|India|68.5|67.3|69.8|1266883598|as
25|USA|79.8|77.5|82.1|323995528|na
|Indonesia|72.7|70.1|75.5|258316051|ea
|Brazil|73.8|70.2|77.5|205823665|sa
|Pakistan|67.7|65.8|69.8|201995540|as
-20|Nigeria|53.4|52.4|54.5|186053386|af
|Bangladesh|73.2|71|75.4|156186882|as
-10|Russia|70.8|65|76.8|142355415|eu
1|Japan|85|81.7|88.5|126702133|ea
|Mexico|75.9|73.1|78.8|123166749|na
|Philippines|69.2|65.7|72.9|102624209|ea
|Ethiopia|62.2|59.8|64.7|102374044|af
|Vietnam|73.4|70.9|76.2|95261021|ea
|Egypt|72.7|71.4|74.2|94666993|af
|Iran|71.4|69.8|73.1|82801633|me
-15|DR Congo|57.3|55.8|58.9|81331050|af
|Germany|80.7|78.4|83.1|80722792|eu
|Turkey|74.8|72.5|77.3|80274604|me
|Thailand|74.7|71.5|78|68200824|ea
|France|81.8|78.7|85.1|66836154|eu
12|UK|80.7|78.5|83|64430428|eu
|Italy|82.2|79.6|85|62007540|eu
|Burma|66.6|64.2|69.2|56890418|ea
|South Africa|63.1|61.6|64.6|54300704|af
|Tanzania|62.2|60.8|63.6|52482726|af
|Korea, South|82.4|79.3|85.8|50924172|ea
|Spain|81.7|78.7|84.9|48563476|eu
|Colombia|75.7|72.6|79|47220856|sa
|Kenya|64|62.6|65.5|46790758|af
|Ukraine|71.8|67.1|76.9|44209733|eu
|Argentina|77.1|74|80.4|43886748|sa
|Algeria|76.8|75.5|78.2|40263711|af
|Poland|77.6|73.7|81.7|38523261|eu
|Uganda|55.4|54|56.9|38319241|af
|Iraq|74.9|72.6|77.2|38146025|me
|Sudan|64.1|62|66.3|36729501|af
|Canada|81.9|79.2|84.6|35362905|na
|Morocco|76.9|73.8|80.1|33655786|af
-15|Afghanistan|51.3|49.9|52.7|33332025|as
|Malaysia|75|72.2|78|30949962|ea
|Venezuela|75.8|72.7|78.9|30912302|sa
|Peru|73.7|71.7|75.9|30741062|sa
|Uzbekistan|73.8|70.7|77|29473614|ca
|Nepal|70.7|70.1|71.3|29033914|as
|Saudi Arabia|75.3|73.2|77.4|28160273|me
|Yemen|65.5|63.4|67.8|27392779|me
|Ghana|66.6|64.1|69.1|26908262|af
|Mozambique|53.3|52.6|54.1|25930150|af
|Korea, North|70.4|66.6|74.5|25115311|ea
|Madagascar|65.9|64.4|67.4|24430325|af
|Cameroon|58.5|57.1|59.9|24360803|af
|Cote d'Ivoire|58.7|57.5|59.9|23740424|af
|Taiwan|80.1|77|83.5|23464787|ea
|Australia|82.2|79.8|84.8|22992654|oc
|Sri Lanka|76.8|73.3|80.4|22235000|as
|Romania|75.1|71.7|78.8|21599736|eu
|Angola|56|54.8|57.2|20172332|af
|Burkina Faso|55.5|53.4|57.6|19512533|af
|Niger|55.5|54.3|56.8|18638600|af
|Malawi|61.2|59.2|63.2|18570321|af
|Kazakhstan|70.8|65.6|75.7|18360353|ca
|Chile|78.8|75.7|81.9|17650114|sa
|Mali|55.8|53.9|57.7|17467108|af
|Syria|74.9|72.5|77.4|17185170|me
|Netherlands|81.3|79.2|83.6|17016967|eu
|Ecuador|76.8|73.8|79.9|16080778|sa
|Cambodia|64.5|62|67.1|15957223|ea
|Zambia|52.5|50.8|54.1|15510711|af
|Guatemala|72.3|70.3|74.4|15189958|la
|Zimbabwe|58|57.3|58.7|14546961|af
|Senegal|61.7|59.7|63.8|14320055|af
|Rwanda|60.1|58.5|61.7|12988423|af
|Guinea|60.6|59|62.2|12093349|af
-1|Chad|50.2|49|51.5|11852462|af
|Belgium|81|78.4|83.7|11409077|eu
|Cuba|78.7|76.4|81.1|11179995|la
|Tunisia|76.1|74|78.4|11134588|af
|Burundi|60.5|58.8|62.3|11099298|af
|Bolivia|69.2|66.4|72.1|10969649|sa
|Portugal|79.3|76.1|82.8|10833816|eu
|Somalia|52.4|50.3|54.5|10817354|af
|Greece|80.5|77.9|83.3|10773253|eu
|Benin|61.9|60.5|63.3|10741458|af
|Czechia|78.6|75.7|81.8|10644842|eu
|Dominican Republic|78.1|75.9|80.5|10606865|la
|Haiti|63.8|61.2|66.4|10485800|la
|Sweden|82.1|80.2|84.1|9880604|eu
|Hungary|75.9|72.2|79.8|9874784|eu
|Azerbaijan|72.5|69.5|75.8|9872765|me
-17|Belarus|72.7|67.2|78.6|9570376|eu
|Honduras|71.1|69.5|72.8|8893259|la
|Austria|81.5|78.9|84.3|8711770|eu
|Tajikistan|67.7|64.6|71|8330946|ca
|Jordan|74.6|73.2|76.1|8185384|me
|Switzerland|82.6|80.3|85|8179294|eu
|Israel|82.4|80.6|84.4|8174527|me
|Togo|65|62.3|67.7|7756937|af
|Hong Kong|82.9|80.3|85.8|7167403|ea
|Bulgaria|74.5|71.2|78|7144653|eu
|Serbia|75.5|72.6|78.5|7143921|eu
|Laos|64.3|62.2|66.4|7019073|ea
|Paraguay|77.2|74.5|80|6862812|sa
|Papua New Guinea|67.2|65|69.5|6791317|ea
|Libya|76.5|74.7|78.3|6541948|af
|Lebanon|77.6|76.3|78.9|6237738|me
|El Salvador|74.7|71.4|78.1|6156670|la
|Sierra Leone|58.2|55.6|60.9|6018888|af
|Nicaragua|73.2|71.1|75.5|5966798|la
|United Arab Emirates|77.5|74.8|80.2|5927482|me
|Eritrea|64.9|62.4|67.5|5869869|af
10|Singapore|85|82.3|87.8|5781728|ea
|Kyrgyzstan|70.7|66.5|75.1|5727553|ca
|Denmark|79.4|77|82|5593785|eu
|Central African Republic|52.3|51|53.7|5507257|af
|Finland|80.9|77.9|84|5498211|eu
|Slovakia|77.1|73.5|80.9|5445802|eu
|Turkmenistan|70.1|67.1|73.3|5291317|ca
|Norway|81.8|79.8|83.9|5265158|eu
|Ireland|80.8|78.5|83.2|4952473|eu
|Georgia|76.2|72.1|80.6|4928052|me
|Costa Rica|78.6|75.9|81.4|4872543|la
|Congo, Republic of the|59.3|58.1|60.6|4852412|af
|New Zealand|81.2|79.1|83.3|4474549|oc
|Croatia|75.9|72.7|79.2|4313707|eu
|Liberia|59|57.3|60.8|4299944|af
|Bosnia and Herzegovina|76.7|73.7|80|3861912|eu
|Panama|78.6|75.8|81.6|3705246|la
|Mauritania|63|60.7|65.4|3677293|af
|Puerto Rico|79.4|75.8|83.1|3578056|la
|Moldova|70.7|66.9|74.8|3510485|eu
|Oman|75.5|73.5|77.5|3355262|me
|Uruguay|77.2|74.1|80.5|3351016|sa
|Armenia|74.6|71.4|78.3|3051250|me
|Albania|78.3|75.7|81.2|3038594|eu
|Mongolia|69.6|65.4|74.1|3031330|ea
|Jamaica|73.6|72|75.3|2970340|la
|Lithuania|74.9|69.5|80.6|2854235|eu
|Kuwait|78|76.6|79.4|2832776|me
|West Bank|75|73|77.1|2697687|me
|Namibia|63.6|62.1|65.1|2436469|af
|Qatar|78.7|76.7|80.8|2258283|me
1|Botswana|54.5|56.3|52.6|2209208|af
|Macedonia|76.2|73.6|79|2100025|eu
|Gambia, The|64.9|62.5|67.3|2009648|af
|Slovenia|78.2|74.6|82|1978029|eu
|Latvia|74.5|69.9|79.3|1965686|eu
|Lesotho|53|52.9|53.1|1953070|af
-2|Guinea-Bissau|50.6|48.6|52.7|1759159|af
|Gaza Strip|73.9|72.3|75.7|1753327|me
|Gabon|52.1|51.6|52.5|1738541|af
1|Swaziland|51.6|52.2|51|1451428|af
|Bahrain|78.9|76.7|81.1|1378904|me
|Mauritius|75.6|72.2|79.2|1348242|af
|Timor-Leste|68.1|66.5|69.7|1261072|ea
|Estonia|76.7|71.9|81.7|1258545|eu
|Trinidad and Tobago|72.9|69.9|75.9|1220479|la
|Cyprus|78.7|75.8|81.6|1205575|eu
|Fiji|72.7|70|75.5|915303|oc
|Djibouti|63.2|60.7|65.8|846687|af
|Comoros|64.2|61.9|66.6|794678|af
|Equatorial Guinea|64.2|63.1|65.4|759451|af
|Bhutan|70.1|69.1|71.1|750125|as
|Guyana|68.4|65.4|71.5|735909|sa
|Solomon Islands|75.3|72.7|78.1|635027|oc
-10|Macau|84.5|81.6|87.6|597425|ea
|Western Sahara|63|60.7|65.4|587020|af
|Suriname|72.2|69.8|74.8|585824|sa
|Luxembourg|82.3|79.8|84.9|582291|eu
|Cabo Verde|72.1|69.8|74.5|553432|af
|Brunei|77.2|74.8|79.6|436620|ea
|Malta|80.4|78|82.8|415196|eu
|Maldives|75.6|73.3|78|392960|as
|Belize|68.7|67.2|70.4|353858|la
|Iceland|83|80.9|85.3|335878|eu
|Bahamas, The|72.4|70|74.8|327316|la
|Barbados|75.3|73|77.7|291495|la
|French Polynesia|77.2|74.9|79.6|285321|oc
|Vanuatu|73.4|71.8|75.1|277554|oc
|New Caledonia|77.7|73.7|81.9|275355|oc
|Samoa|73.7|70.8|76.8|198926|oc
|Sao Tome and Principe|64.9|63.6|66.3|197541|af
|Saint Lucia|77.8|75|80.7|164464|la
|Guam|79.1|76.1|82.4|162742|oc
|Curacao|78.3|76|80.7|149035|la
|Aruba|76.8|73.7|79.9|113648|la
|Grenada|74.3|71.7|77.1|111219|la
|Kiribati|66.2|63.7|68.8|106925|oc
|Tonga|76.2|74.7|77.8|106513|oc
|Micronesia, Federated States of|72.9|70.8|75|104719|oc
|Virgin Islands|80|77|83.2|102951|la
|Saint Vincent and the Grenadines|75.3|73.3|77.4|102350|la
|Jersey|81.9|79.4|84.5|98069|eu
|Antigua and Barbuda|76.5|74.4|78.8|93581|la
|Seychelles|74.7|70.2|79.4|93186|af
|Isle of Man|81.2|79.5|83|88195|eu
|Andorra|82.8|80.6|85.1|85660|eu
|Dominica|77|74|80.1|73757|la
|Marshall Islands|73.1|70.9|75.4|73376|oc
|Bermuda|81.3|78.1|84.5|70537|na
|Guernsey|82.5|79.9|85.4|66297|eu
|Greenland|72.4|69.7|75.2|57728|na
|Cayman Islands|81.2|78.5|84|57268|la
|American Samoa|75.4|72.4|78.5|54194|oc
|Northern Mariana Islands|78|75.3|80.8|53467|oc
|Saint Kitts and Nevis|75.7|73.3|78.2|52329|la
|Turks and Caicos Islands|79.8|77.1|82.7|51430|la
|Faroe Islands|80.4|77.8|83.1|50456|eu
|Sint Maarten|78.1|75.8|80.6|41486|la
|Liechtenstein|81.9|79.7|84.6|37937|eu
|British Virgin Islands|78.6|77.2|80.1|34232|la
|San Marino|83.3|80.7|86.1|33285|eu
-1|Monaco|89.5|85.6|93.5|30581|eu
|Gibraltar|79.4|76.6|82.5|29328|eu
|Palau|73.1|69.9|76.5|21347|oc
|Anguilla|81.4|78.8|84.1|16752|la
|Wallis and Futuna|79.7|76.7|82.8|15664|oc
|Tuvalu|66.5|64.3|68.8|10959|oc
|Nauru|67.1|63|70.5|9591|oc
|Cook Islands|75.8|73|78.8|9556|oc
|Saint Helena, Ascension, and Tristan da Cunha|79.5|76.6|82.6|7795|af
|Saint Pierre and Miquelon|80.5|78.2|83|5595|na
1|Montserrat|74.4|75.8|72.9|5267|la
|Falkland Islands (Islas Malvinas)|77.9|75.6|79.6|2931|sa
|Svalbard|NA|NA|NA|2667|eu
|Norfolk Island|NA|NA|NA|2210|oc
|Christmas Island|NA|NA|NA|2205|oc
|Tokelau|NA|NA|NA|1285|oc
|Niue|NA|NA|NA|1190|oc
|Cocos (Keeling) Islands|NA|NA|NA|596|oc
|Pitcairn Islands|NA|NA|NA|54|oc
'''.strip().split('\n')]

# do_refresh_cache = True

def read_url(url, headers={}, path_cache=None, is_verbose=True):
 if (path_cache is None):
  file_cache = os.path.basename(url)
  path_cache = os.path.join('%s.cache' % (os.path.splitext(__file__)[0]),
                            file_cache if (len(file_cache) > 0) else
                            '%s.htm' % (os.path.basename(url.rstrip('/'))))
 if (('do_refresh_cache' in globals() and do_refresh_cache) or
     (not os.path.isfile(path_cache))):
  request = urllib2.Request(url, headers=headers)
  try:                           html = urllib2.urlopen(request).read()
  except urllib2.HTTPError as e: html = ''; print(e)
  try:            os.makedirs(os.path.dirname(path_cache))
  except OSError: pass
  with open(path_cache, 'wb') as f_html: f_html.write(html)
  if (is_verbose): print('%s > %s' % (url, path_cache))
  time.sleep(1) ## avoid rate-limit-exceeded error
 else:
  with open(path_cache) as f_html: html = f_html.read()
  if (is_verbose): print('< %s' % (path_cache))
 try:                       html = html.decode('utf-8')
 except UnicodeDecodeError: pass
 return html
def fmt(string): ## string.format(**vars()) using tags {expression!format} by CMG Lee
 def f(tag): i_sep = tag.rfind('!'); return (re.sub('\.0+$', '', str(eval(tag[1:-1])))
  if (i_sep < 0) else ('{:%s}' % tag[i_sep + 1:-1]).format(eval(tag[1:i_sep])))
 return (re.sub(r'(?<!{){[^{}]+}', lambda m:f(m.group()), string)
         .replace('{{', '{').replace('}}', '}'))
def append(obj, string): return obj.append(fmt(string))
def format_tab(*arg): return '\t'.join([str(el) for el in (arg if len(arg) > 1 else arg[0])])
def tabbify(cellss, separator='|'):
 cellpadss = [list(rows) + [''] * (len(max(cellss, key=len)) - len(rows)) for rows in cellss]
 fmts = ['%%%ds' % (max([len(str(cell)) for cell in cols])) for cols in zip(*cellpadss)]
 return '\n'.join([separator.join(fmts) % tuple(rows) for rows in cellpadss])
def hex_rgb(colour): ## convert [#]RGB to #RRGGBB and [#]RRGGBB to #RRGGBB
 return '#%s' % (colour if len(colour) > 4 else ''.join([c * 2 for c in colour])).lstrip('#')
def try_int_float(field):
 try:     return int(field)
 except:
  try:    return float(field)
  except: return field
def roundm(x, multiple=1):
 try: x[0]; return [roundm(element, multiple) for element in x] ## x[0] checks if x is iterable
 except:    return int(math.floor(float(x) / multiple + 0.5)) * multiple

def findall(regex, string):
 return re.findall(regex, string, flags=re.I|re.DOTALL)
def sub(regex_replace, regex_with, string):
 return str(re.sub(regex_replace, regex_with, string, flags=re.DOTALL).strip())

def make_serial(name): return sub(r'[^a-z]', '', name.lower())
def make_table(datass):
 return '\n'.join(['|'.join([str(data) for data in datas]) for datas in datass])

data_newss = {}

html_expectancy = read_url('http://cia.gov/library/publications/resources/the-world-factbook/fields/355.html')
html_expectancyss = findall(r'(<td.+?</td>)\s*(<td.+?</td>)', html_expectancy)
for html_expectancys in html_expectancyss:
 html_divs = findall(r'<div.+?</div>', html_expectancys[1])
 name      = sub(r'<.*?>', '', html_expectancys[0])
 serial    = make_serial(name)
 # expectancy_male   = None
 # expectancy_female = None
 # try:              expectancy_male   = float(findall(r'[\d.]+(?= years)', html_divs[1])[0])
 # except Exception: pass
 # try:              expectancy_female = float(findall(r'[\d.]+(?= years)', html_divs[2])[0])
 # except Exception: pass
 # if (not serial in data_newss): data_newss[serial] = {}
 # data_newss[serial]['male'  ] = expectancy_male
 # data_newss[serial]['female'] = expectancy_female
 try:
  expectancy_overall = float(findall(r'(?:[\d.]+(?= years)|\d+\.\d+)', html_divs[0])[0])
  expectancy_male    = float(findall(r'(?:[\d.]+(?= years)|\d+\.\d+)', html_divs[1])[0])
  expectancy_female  = float(findall(r'(?:[\d.]+(?= years)|\d+\.\d+)', html_divs[2])[0])
  if (not serial in data_newss): data_newss[serial] = {}
  data_newss[serial]['overall'] = expectancy_overall
  data_newss[serial]['male'   ] = expectancy_male
  data_newss[serial]['female' ] = expectancy_female
 except Exception: pass

html_population = read_url('http://cia.gov/library/publications/resources/the-world-factbook/fields/335.html')
html_populationss = findall(r'(<td.+?</td>)\s*(<td.+?</td>)', html_population)
for html_populations in html_populationss:
 name   = sub(r'<.*?>', '', html_populations[0])
 serial = make_serial(name)
 # population = None
 # if (not 'no indigenous' in html_populations[1]):
 #  try:              population = int(sub(',','',findall(r'[\d,]+', html_populations[1])[0]))
 #  except Exception: pass
 # if (not serial in data_newss): data_newss[serial] = {}
 # data_newss[serial]['population'] = population
 if (not 'no indigenous' in html_populations[1]):
  try:
   population = int(sub(',','',findall(r'[\d,]+', html_populations[1])[0]))
   if (not serial in data_newss): data_newss[serial] = {}
   data_newss[serial]['name']       = name
   data_newss[serial]['population'] = population
  except Exception: pass

outss = []
for serial in sorted(data_newss):
 data_news = data_newss[serial]
 try: outss.append([serial, data_news['name'], data_news['population'],
                    data_news['overall'], data_news['male'], data_news['female']])
                    # data_news['population'] if ('population' in data_news) else None,
                    # data_news['male']       if ('male'       in data_news) else None,
                    # data_news['female']     if ('female'     in data_news) else None])
 except Exception: pass
  # print(data_newss.pop(serial))
# print(tabbify(outss))

outss = []
# print(tabbify(data_oldss))
map_keeps   = {'usa':'unitedstates', 'uk':'unitedkingdom', 'drcongo':'congodemocraticrepublicofthe'}
map_changes = {'swaziland':'eswatini'}

for data_olds in data_oldss:
 name      = data_olds[1]
 serial    = make_serial(name)
 data_news = None
 try:
  if (serial in map_keeps): serial = map_keeps[serial]
  if (serial in map_changes):
   serial    = map_changes[serial]
   data_news = data_newss[serial]
   name      = data_news['name']
  else:
   data_news = data_newss[serial]
 except Exception: pass
 outss.append([data_olds[0],
               name,
               # data_news['name'      ] if ('name'       in data_news) else 'NA',
               data_news['overall'   ] if ('overall'    in data_news) else 'NA',
               data_news['male'      ] if ('male'       in data_news) else 'NA',
               data_news['female'    ] if ('female'     in data_news) else 'NA',
               data_news['population'] if ('population' in data_news) else 'NA',
               data_olds[6]])
 # outss.append(data_olds)
 if (name != data_news['name']): print(name, data_news['name'])
# print(tabbify(outss))
outss = outss[:2] + sorted(outss[2:], key=lambda lines:lines[5], reverse=True)

dir_cache = '%s.cache' % (os.path.splitext(__file__)[0])
with open(os.path.join(dir_cache, 'old.txt'), 'w') as f: f.write(make_table(data_oldss))
with open(os.path.join(dir_cache, 'new.txt'), 'w') as f: f.write(make_table(outss))

许可协议

我,本作品著作权人,特此采用以下许可协议发表本作品:
w:zh:知识共享
署名 相同方式共享
您可以自由地:
  • 共享 – 复制、发行并传播本作品
  • 修改 – 改编作品
惟须遵守下列条件:
  • 署名 – 您必须对作品进行署名,提供授权条款的链接,并说明是否对原始内容进行了更改。您可以用任何合理的方式来署名,但不得以任何方式表明许可人认可您或您的使用。
  • 相同方式共享 – 如果您再混合、转换或者基于本作品进行创作,您必须以与原先许可协议相同或相兼容的许可协议分发您贡献的作品。
GNU head 已授权您依据自由软件基金会发行的无固定段落及封面封底文字(Invariant Sections, Front-Cover Texts, and Back-Cover Texts)的GNU自由文件许可协议1.2版或任意后续版本的条款,复制、传播和/或修改本文件。该协议的副本请见“GNU Free Documentation License”。
您可以选择您需要的许可协议。

说明

添加一行文字以描述该文件所表现的内容

此文件中描述的项目

描绘内容

创作作者 简体中文(已转写)

某些值没有维基数据项目

作者姓名字符串 简体中文(已转写):​Cmglee
维基媒体用户名 简体中文(已转写):​Cmglee

版权状态 简体中文(已转写)

版权所有 简体中文(已转写)

文件来源 简体中文(已转写)

上传者的原创作品 简体中文(已转写)

媒体类型 简体中文(已转写)

image/svg+xml

校验和 简体中文(已转写)

70ad5dbacbff2843897fff5dd186c06900a6682e

断定方法:​SHA-1 简体中文(已转写)

数据大小 简体中文(已转写)

130,119 字节

448 像素

512 像素

文件历史

点击某个日期/时间查看对应时刻的文件。

日期/时间缩⁠略⁠图大小用户备注
当前2019年2月27日 (三) 22:212019年2月27日 (三) 22:21版本的缩略图512 × 448(127 KB)CmgleeUpdate with 2018 data.
2017年6月19日 (一) 19:592017年6月19日 (一) 19:59版本的缩略图512 × 448(127 KB)CmgleeUpdate with 2016 data.
2016年2月7日 (日) 01:422016年2月7日 (日) 01:42版本的缩略图512 × 512(128 KB)CmgleeAdd interactivity using CSS and title tag.
2015年6月28日 (日) 04:342015年6月28日 (日) 04:34版本的缩略图512 × 512(95 KB)LeftcryFix
2015年6月25日 (四) 03:492015年6月25日 (四) 03:49版本的缩略图512 × 512(95 KB)LeftcryEurope classification
2011年11月20日 (日) 21:262011年11月20日 (日) 21:26版本的缩略图512 × 512(59 KB)CmgleeUpdate colours.
2011年11月20日 (日) 20:212011年11月20日 (日) 20:21版本的缩略图512 × 512(59 KB)Cmglee{{Information |Description ={{en|1=Comparison of male and female life expectancy at birth for countries and territories as defined in the 2011 CIA Factbook, with selected bubbles labelled. The dotted line corresponds to equal female and male life expec

以下页面使用本文件:

全域文件用途

以下其他wiki使用此文件:

元数据