File:Karl Deisseroth's Projections, Optogenetics, Disassocation, and Psychedelics (52095403529) (cropped).jpg
原始檔案 (914 × 1,178 像素,檔案大小:304 KB,MIME 類型:image/jpeg)
摘要
描述Karl Deisseroth's Projections, Optogenetics, Disassocation, and Psychedelics (52095403529) (cropped).jpg |
Or: How to change your mind, with psychedelics and optogenetics. Genevieve introduced the closing keynote for the PSFC Summit today: Karl Deisseroth is the pioneer of the mind-reading and writing tool (<a href="http://optogenetics.org" rel="noreferrer nofollow">optogenetics.org</a> at Stanford) that allows for individual neuron targeting and manipulation, and his new work looks at the effects of mind-altering drugs on brain function in detail. For a sense of the power of his methods: he can take a pair of mice than were just mating happily, and with a flip of a switch, they become violent to each other. He made a mouse walk in an infinite left turn loop when a fiber optic is flipped on in the motor cortex (with no apparent awareness or distress at being controlled this way). Another team selectively turned on subsets of parenting behavior (like bringing wandering young back to the nest or grooming behaviors). They can also probe three different sub-states of anxiety that we only experience as a bundle. How does this work? Before the plant kingdom evolved chlorophyll to harvest energy from sunlight, the more ancient bacteria used rhodopsins in a membrane-bound proton-pump to do the same. The rhodopsins captured a swath of the sun’s spectrum, tilting the algae to the leftover parts of the spectrum not yet absorbed, and this is why plants are green. Karl introduced these bacterial light-triggered elements into neurons of interest using a viral vector to the brain. He can then trigger neuronal firing optically, as the rhodopsin pump supplements the ion channels in the neuron. He can also trigger reporter molecules from the bacterial world to read out brain activity as the brain is functioning. So, for example, he has observed a 3 Hz cycling in the retrosplenial cortex of a mouse brain on ketamine, and he has been able to reproduce the effects with optogenetic stimulation to achieve similar effects. He has also found that the dissociative drugs (ketamine and PCP) allow for reflexes to pain (e.g., heat on paw or puff of air to eyes) to continue normally, while the protective cognitive reactions (licking the paws after heat or squinting in anticipation of the next puff) disappear, a disassociation of mind and body reflexes. He is diving deeper into the brain to investigate how this works, finding that the various subregions of the thalamus are regulated by disassociative drugs by overpowering the voting circuits with a pulsing 3 Hz modulation of the ketamine-enhanced circuits. The other nodes in the thalamus are operating as before, but do not achieve as powerful a consensus. The thalamus regulates where we spend our attention and conscious focus, to avoid doing everything we might be tempted to do simultaneously, and thereby not really doing any of them well. In his latest work, he has found that MDMA operates very differently than Ketamine (work to be published later this year). The implications of this level of understanding are enormous. The questions we can now ask using optogenetics will transform how we understand mental disorders and also call into question some deep philosophical questions surrounding consciousness and free will. It may also unveil the mysteries about how psychedelics operate in the brain, allowing us to optimize the use cases for testing in human clinical trials. Exciting work is going on with psilocybin for alcohol use disorder, extreme OCD and the eating disorders (which are also a disassociation of mind from body). |
|||
日期 | ||||
來源 | Karl Deisseroth's Projections, Optogenetics, Disassocation, and Psychedelics | |||
作者 | Steve Jurvetson from Los Altos, USA | |||
其他版本 |
|
授權條款
- 您可以自由:
- 分享 – 複製、發佈和傳播本作品
- 重新修改 – 創作演繹作品
- 惟需遵照下列條件:
- 姓名標示 – 您必須指名出正確的製作者,和提供授權條款的連結,以及表示是否有對內容上做出變更。您可以用任何合理的方式來行動,但不得以任何方式表明授權條款是對您許可或是由您所使用。
共享創意署名2.0通用版 Chinese (Hong Kong) (已轉換拼寫)
曝光時間 繁體中文 (已轉換拼寫)
0.00826446280991735537 秒
焦距比數 Chinese (Hong Kong) (已轉換拼寫)
1.5
焦距 Chinese (Hong Kong) (已轉換拼寫)
5.7 毫米
ISO速度 繁體中文 (已轉換拼寫)
100
多媒體型式 繁體中文 (已轉換拼寫)
image/jpeg
檔案歷史
點選日期/時間以檢視該時間的檔案版本。
日期/時間 | 縮圖 | 尺寸 | 用戶 | 備註 | |
---|---|---|---|---|---|
目前 | 2022年5月25日 (三) 13:22 | 914 × 1,178(304 KB) | BugWarp | File:Karl Deisseroth's Projections, Optogenetics, Disassocation, and Psychedelics (52095403529).jpg cropped 67 % horizontally, 66 % vertically using CropTool with lossless mode. |
檔案用途
下列頁面有用到此檔案:
全域檔案使用狀況
以下其他 wiki 使用了這個檔案:
- en.wikipedia.org 的使用狀況
- ja.wikipedia.org 的使用狀況
- nl.wikipedia.org 的使用狀況
詮釋資料
此檔案中包含擴展的資訊。這些資訊可能是由數位相機或掃描器在建立時或數位化過程中所加入。
如果此檔案的來源檔案已被修改,一些資訊在修改後的檔案中將不能完全反映出來。
相機製造商 | Apple |
---|---|
相機型號 | iPhone 13 Pro |
曝光時間 | 1/121 秒 (0.0082644628099174) |
光圈值 | f/1.5 |
ISO 速率 | 100 |
資料產生的日期時間 | 2022年5月23日 (一) 14:24 |
焦距 | 5.7毫米 |
方位 | 標準 |
水平解析度 | 72 dpi |
垂直解析度 | 72 dpi |
使用軟體 | 15.4.1 |
檔案修改日期時間 | 2022年5月23日 (一) 14:24 |
亮度與彩度位置 | 中間 |
曝光模式 | 標準模式 |
Exif 版本 | 2.32 |
數位化的日期時間 | 2022年5月23日 (一) 14:24 |
每像素內含 |
|
APEX 快門速度 | 6.9219148718996 |
APEX 光圈 | 1.1699250021067 |
APEX 亮度 | 3.7501009238861 |
APEX 曝光補償 | 0 |
測光模式 | 模式 |
閃光燈 | 閃光燈未開啟、強制閃光燈關閉 |
文件建立時間數據亞秒數 | 831 |
文件數位化時間數據亞秒數 | 831 |
支援的 Flashpix 版本 | 1 |
色彩空間 | 顏色未校準 |
感光模式 | 單晶片彩色區域感測器 |
場景類型 | 直接照像圖片 |
曝光模式 | 自動曝光 |
白平衡 | 自動白平衡 |
35 毫米膠片焦距 | 26毫米 |
場景拍攝類型 | 標準 |