跳至內容

File:Collatz Fractal.jpg

頁面內容不支援其他語言。
這個檔案來自維基共享資源
維基百科,自由的百科全書

原始檔案 (40,320 × 17,280 像素,檔案大小:46.24 MB,MIME 類型:image/jpeg


摘要

警告 部分瀏覽器在瀏覽此圖片的完整大小時可能會遇到困難:該圖片中有數量巨大的像素點,可能無法完全載入或者導致您的瀏覽器停止回應。 交互式大图查看器
描述
English: A Collatz fractal for the interpolating function .[1] The center of the image is and the real part goes from to .
  1. (1999). "The (3n + 1)-problem and holomorphic dynamics". Experimental Mathematics 8 (3): 241–252. DOI:10.1080/10586458.1999.10504402.
日期
來源 自己的作品
作者 Hugo Spinelli
其他版本
new file This image is a JPEG version of the original PNG image at File: Collatz Fractal.png.

Generally, this JPEG version should be used when displaying the file from Commons, in order to reduce the file size of thumbnail images. However, any edits to the image should be based on the original PNG version in order to prevent generation loss, and both versions should be updated. Do not make edits based on this version.  See here for more information.

Source code
InfoField
Python code
import enum
import itertools
import time
from math import floor, ceil

import numba as nb
import numpy as np
import matplotlib
from PIL import Image, PyAccess


# Amount of times to print the total progress
PROGRESS_STEPS: int = 20

# Set to `True` to plot the shortcut version of the fractal
SHORTCUT: bool = True

# Make all integers critical points
FIX_CRITICAL_POINTS: bool = True

# Width of the image in pixels and aspect ratio
RESOLUTION: int = 1920*1080//4
ASPECT_RATIO: float = 21/9 if FIX_CRITICAL_POINTS else 16/9

# Value of the center pixel
CENTER: complex = 0 + 0j

# Value range of the real part (width of the horizontal axis)
RE_RANGE: float = 10 if FIX_CRITICAL_POINTS else 5

# Show grid lines for integer real and imaginary parts
SHOW_GRID: bool = False
GRID_COLOR: tuple[int, int, int] = (125, 125, 125)

# Matplotlib named colormap
COLORMAP_NAME: str = 'inferno'

# Plot range of the axes
X_MIN = CENTER.real - RE_RANGE/2  # min Re(z)
X_MAX = CENTER.real + RE_RANGE/2  # max Re(z)
Y_MIN = CENTER.imag - RE_RANGE/(2*ASPECT_RATIO)  # min Im(z)
Y_MAX = CENTER.imag + RE_RANGE/(2*ASPECT_RATIO)  # max Im(z)

x_range = X_MAX - X_MIN
y_range = Y_MAX - Y_MIN
pixels_per_unit = np.sqrt(RESOLUTION/(x_range*y_range))

# Width and height of the image in pixels
WIDTH = round(pixels_per_unit*x_range)
HEIGHT = round(pixels_per_unit*y_range)


# Maximum iterations for the divergence test (recommended >= 60)
MAX_ITER: int = 60


# Max value of Re(z) and Im(z) for which the recursion doesn't overflow
CUTOFF_RE = 7.564545572282618e+153
CUTOFF_IM = 112.10398935569289 if SHORTCUT else 111.95836403625282

# Smallest positive real fixed point
INNER_FIXED_POINT = 0.277733766171606 if SHORTCUT else 0.150108511304474


# Precompute the colormap
CMAP_LEN: int = 2000
cmap_mpl = matplotlib.colormaps[COLORMAP_NAME]
# Start away from 0 (discard black values for the 'inferno' colormap)
# Matplotlib's colormaps have 256 discrete color points
n_cmap = round(256*0.98)
CMAP = [cmap_mpl(k/256) for k in range(256 - n_cmap, 256)]
# Interpolate
x = np.linspace(0, 1, num=CMAP_LEN)
xp = np.linspace(0, 1, num=n_cmap)
c0, c1, c2 = tuple(np.interp(x, xp, [c[k] for c in CMAP]) for k in range(3))
CMAP = []
for x0, x1, x2 in zip(c0, c1, c2):
    CMAP.append(tuple(round(255*x) for x in (x0, x1, x2)))


class DivType(enum.Enum):
    """Divergence type."""

    CONVERGED = -1  # Converged
    MAX_ITER = 0  # Maximum iterations reached
    CUTOFF_RE = 1  # Diverged by exceeding the real part cutoff
    CUTOFF_IM = 2  # Diverged by exceeding the imaginary part cutoff


@nb.jit(nb.float64(nb.float64, nb.int64), nopython=True)
def smooth(x, k=1):
    """Recursive exponential smoothing function."""

    y = np.expm1(np.pi*x)/np.expm1(np.pi)
    if k <= 1:
        return y
    return smooth(y, np.fmin(6, k - 1))


@nb.jit(nb.float64(nb.float64, nb.float64), nopython=True)
def get_delta(x, cutoff):
    """Get the fractional part of the smoothed divergence count."""

    nu = np.log(np.abs(x)/cutoff)/(np.pi*cutoff - np.log(cutoff))
    nu = np.fmax(0, np.fmin(nu, 1))
    return smooth(1 - nu, 2)


@nb.jit(
    nb.types.containers.Tuple((
        nb.float64,
        nb.types.EnumMember(DivType, nb.int64)
    ))(nb.complex128),
    nopython=True
)
def divergence_count(z):
    """Return a smoothed divergence count and the type of divergence."""

    z_fix = 0 + 0j
    for k in range(MAX_ITER):
        c = np.cos(np.pi*z)
        if SHORTCUT:
            if FIX_CRITICAL_POINTS:
                z_fix = (0.5 - c)*np.sin(np.pi*z)/np.pi
            z = 0.25 + z - (0.25 + 0.5*z)*c + z_fix
        else:  # Regular
            if FIX_CRITICAL_POINTS:
                z_fix = (1.25 - 1.75*c)*np.sin(np.pi*z)/np.pi
            z = 0.5 + 1.75*z - (0.5 + 1.25*z)*c + z_fix

        if np.abs(z.imag) > CUTOFF_IM:
            # Diverged by exceeding the imaginary part cutoff
            return k + get_delta(z.imag, CUTOFF_IM), DivType.CUTOFF_IM
        if np.abs(z.real) > CUTOFF_RE:
            # Diverged by exceeding the real part cutoff
            return k + get_delta(z.real, CUTOFF_RE), DivType.CUTOFF_RE
        if np.abs(z) < INNER_FIXED_POINT:
            # Converged to a fixed point
            return -1, DivType.CONVERGED

    # Maximum iterations reached
    return -1, DivType.MAX_ITER


@nb.jit(nb.float64(nb.float64), nopython=True)
def cyclic_map(g):
    """A continuous function that cycles back and forth from 0 to 1."""

    # This can be any continuous function.
    # Log scale removes high-frequency color cycles.
    freq_div = 12
    g = np.log1p(np.fmax(0, (g - 1)/freq_div))

    # Beyond this value for float64, decimals are truncated
    if g >= 2**51:
        return -1

    # Normalize and cycle
    # g += 0.5  # phase from 0 to 1
    return 1 - np.abs(2*(g - np.floor(g)) - 1)


@nb.jit(nb.complex128(nb.types.containers.UniTuple(nb.float64, 2)),
        nopython=True)
def pixel_to_z(p):
    """Convert pixel coordinates to its corresponding complex value."""

    re = X_MIN + (X_MAX - X_MIN)*p[0]/WIDTH
    im = Y_MAX - (Y_MAX - Y_MIN)*p[1]/HEIGHT
    return re + 1j*im


class Progress:
    """Simple progress check helper class."""

    def __init__(self, n: int, steps: int = 10):
        self.n = n
        self.k = 0
        self.steps = steps
        self.step = 1
        self.progress = 0

    def check(self) -> bool:
        self.k += 1
        self.progress = self.k/self.n
        if self.steps*self.k >= self.step*self.n:
            self.step += 1
            return True
        return self.progress == 1


def create_image():
    img = Image.new('RGB', (WIDTH, HEIGHT))
    pix = img.load()
    pix: PyAccess
    n_pix = WIDTH*HEIGHT

    prog = Progress(n_pix, steps=PROGRESS_STEPS)
    for p in itertools.product(range(WIDTH), range(HEIGHT)):
        c = pixel_to_z(p)
        g, div_type = divergence_count(c)
        if g >= 0:
            pix[p] = CMAP[round(cyclic_map(g)*(CMAP_LEN - 1))]
        else:
            # Color of the interior of the fractal
            pix[p] = (0, 0, 0)
        if prog.check():
            print(f'{prog.progress:<7.1%}')

    if SHOW_GRID:
        for x in range(ceil(X_MIN), floor(X_MAX) + 1):
            px = round((x - X_MIN)*(WIDTH - 1)/(X_MAX - X_MIN))
            for py in range(HEIGHT):
                pix[(px, py)] = GRID_COLOR
        for y in range(ceil(Y_MIN), floor(Y_MAX) + 1):
            py = round((Y_MAX - y)*(HEIGHT - 1)/(Y_MAX - Y_MIN))
            for px in range(WIDTH):
                pix[(px, py)] = GRID_COLOR

    return img


img = create_image()
strtime = time.strftime('%Y%m%d-%H%M%S')
fractal_type = 'Shortcut' if SHORTCUT else 'Regular'
filename = f'Collatz_{fractal_type}_{strtime}.png'
img.save(filename)

授權條款

我,本作品的著作權持有者,決定用以下授權條款發佈本作品:
Creative Commons CC-Zero 此檔案在創用CC CC0 1.0 通用公有領域貢獻宣告之下分發。
在此宣告之下分發本作品者,已依據各國著作權法,在全世界放棄其對本作品所擁有的著作權及所有相關相似的法律權利,從而將本作品貢獻至公有領域。您可以複製、修改、分發和演示該作品,用於任何商業用途,所有這些都不需要請求授權。

說明

添加單行說明來描述出檔案所代表的內容
A Collatz fractal with smooth coloring based on divergence speed.

在此檔案描寫的項目

描繪內容

考拉茲猜想 Chinese (Hong Kong) (已轉換拼寫)

分形 中文 (已轉換拼寫)

創作作者 Chinese (Hong Kong) (已轉換拼寫)

沒有維基數據項目的某些值

作者姓名字串 繁體中文 (已轉換拼寫):​Hugo Spinelli
維基媒體使用者名稱 繁體中文 (已轉換拼寫):​Hugo Spinelli

著作權狀態 繁體中文 (已轉換拼寫)

檔案來源 Chinese (Taiwan) (已轉換拼寫)

上傳者的原創作品 繁體中文 (已轉換拼寫)

多媒體型式 繁體中文 (已轉換拼寫)

image/jpeg

校驗和 繁體中文 (已轉換拼寫)

b61dced6fa253b39785596b854188d24ef209cf2

斷定方法:​SHA-1 中文 (已轉換拼寫)

資料大小 Chinese (Hong Kong) (已轉換拼寫)

48,488,982 位元組

17,280 像素

40,320 像素

檔案歷史

點選日期/時間以檢視該時間的檔案版本。

日期/時間縮⁠圖尺寸用戶備⁠註
目前2023年10月6日 (五) 18:21於 2023年10月6日 (五) 18:21 版本的縮圖40,320 × 17,280(46.24 MB)Hugo SpinelliUploaded own work with UploadWizard

下列頁面有用到此檔案:

全域檔案使用狀況

以下其他 wiki 使用了這個檔案: