本文介紹外代數中的運算。關於其他常稱作
內積的相關二元運算,參見
內積。
在數學中,內乘(英語:interior product,或譯內積)是光滑流形上的微分形式外代數上一個次數為 −1 導子,定義為微分形式與一個向量場的縮並。從而如果 X 是流形 M 上一個向量場,那麼
是將一個 p-形式 ω 映為 (p−1)-形式 iXω,由性質
所定義,對任何向量場 X1,..., Xp−1。本質上來說,內乘可以定義在向量空間與外代數上,即只與流形的一點有關。
內乘也稱為內乘法(interior 或 inner multiplication),或內導數(inner derivative 或 derivation)。
一些作者使用字母 代替 ;內乘有時也寫成 或者 。
性質
由反對稱性
所以 。
因為李導數與縮並可以交換,故:
這便得出兩個向量李括號的內乘公式:
內乘與微分形式的外導數以及李導數的關係由嘉當恆等式給出:
這個等式在辛幾何中非常重要:參見矩映射。
另見