File:Mars elevation.stl
頁面內容不支援其他語言。
此 STL 檔案的 PNG 預覽的大小:800 × 600 像素。 其他解析度:320 × 240 像素 | 640 × 480 像素 | 1,024 × 768 像素 | 1,280 × 960 像素 | 2,560 × 1,920 像素 | 5,120 × 3,840 像素。
原始檔案 (5,120 × 2,880 像素,檔案大小:27.93 MB,MIME 類型:application/sla)
View Mars elevation.stl on viewstl.com
摘要
描述Mars elevation.stl |
English: Mars 20-times-exaggerated elevation model by CMG Lee, using MGS MOLA data. |
日期 | |
來源 | 自己的作品 |
作者 | Cmglee |
其他版本 |
Python source
#!/usr/bin/env python
exaggeration = 20
header = ('Mars %s-times-exaggerated elevation model by CMG Lee using MGS MOLA data.'
% (exaggeration))
path_png_alt = 'mars_elevation.png' ## 1-channel equirectangular PNG
luma_datum = 42 ## of 0-255 intensity levels
radius_datum = 3389.5 ## in km
f_wgs84 = 1 - 3376.2 / 3396.2 ## WGS84 flattening factor
km_per_luma = 0.155 * exaggeration ## found from Olympus Mons
scale = 1e-2 ## overall scale of model
lat_offset = 1.0 / 8 ## rotation around planet axis in revolutions
n_division = 200 ## each cubic face divided into n_division^2 squares
class Png:
def __init__(self, path):
(self.width, self.height, self.pixels, self.metadatas) = png.Reader(path).read_flat()
def __str__(self): return str((self.width, self.height, len(self.pixels), self.metadatas))
import time, re, math, struct, png
time.start = time.time()
def log(string): print('%6.3fs\t%s' % (time.time() - time.start, string))
def fmt(string): ## string.format(**vars()) using tags {expression!format} by CMG Lee
def f(tag): i_sep = tag.rfind('!'); return (re.sub('\.0+$', '', str(eval(tag[1:-1])))
if (i_sep < 0) else ('{:%s}' % tag[i_sep + 1:-1]).format(eval(tag[1:i_sep])))
return (re.sub(r'(?<!{){[^{}]+}', lambda m:f(m.group()), string)
.replace('{{', '{').replace('}}', '}'))
def append(obj, string): return obj.append(fmt(string))
def tabbify(cellss, separator='|'):
cellpadss = [list(rows) + [''] * (len(max(cellss, key=len)) - len(rows)) for rows in cellss]
fmts = ['%%%ds' % (max([len(str(cell)) for cell in cols])) for cols in zip(*cellpadss)]
return '\n'.join([separator.join(fmts) % tuple(rows) for rows in cellpadss])
def hex_rgb(colour): ## convert [#]RGB to #RRGGBB and [#]RRGGBB to #RRGGBB
return '#%s' % (colour if len(colour) > 4 else ''.join([c * 2 for c in colour])).lstrip('#')
def viscam_colour(colour):
colour_hex = hex_rgb(colour)
colour_top5bits = [int(colour_hex[i:i+2], 16) >> 3 for i in range(1,7,2)]
return (1 << 15) + (colour_top5bits[0] << 10) + (colour_top5bits[1] << 5) + colour_top5bits[2]
def roundm(x, multiple=1):
if (isinstance(x, tuple)): return tuple(roundm(list(x), multiple))
elif (isinstance(x, list )): return [roundm(x_i, multiple) for x_i in x]
else: return int(math.floor(float(x) / multiple + 0.5)) * multiple
def average(xs): return None if (len(xs) == 0) else float(sum(xs)) / len(xs)
def flatten(lss): return [l for ls in lss for l in ls]
def rotate(facetss, degs): ## around x then y then z axes
(deg_x,deg_y,deg_z) = degs
(sin_x,cos_x) = (math.sin(math.radians(deg_x)), math.cos(math.radians(deg_x)))
(sin_y,cos_y) = (math.sin(math.radians(deg_y)), math.cos(math.radians(deg_y)))
(sin_z,cos_z) = (math.sin(math.radians(deg_z)), math.cos(math.radians(deg_z)))
facet_rotatess = []
for facets in facetss:
facet_rotates = []
for i_point in range(4):
(x,y,z) = [facets[3 * i_point + i_xyz] for i_xyz in range(3)]
if (x is None or y is None or z is None): facet_rotates += [x,y,z]
else:
(y,z) = (y * cos_x - z * sin_x, y * sin_x + z * cos_x) ## rotate about x
(x,z) = (x * cos_y + z * sin_y,-x * sin_y + z * cos_y) ## rotate about y
(x,y) = (x * cos_z - y * sin_z, x * sin_z + y * cos_z) ## rotate about z
facet_rotates += [round(value, 9) for value in [x,y,z]]
facet_rotatess.append(facet_rotates)
return facet_rotatess
def translate(facetss, ds): ## ds = (dx,dy,dz)
return [facets[:3] + [facets[3 * i_point + i_xyz] + ds[i_xyz]
for i_point in range(1,4) for i_xyz in range(3)] for facets in facetss]
def flip(facetss): return [facets[:3]+facets[6:9]+facets[3:6]+facets[9:] for facets in facetss]
def cube_xyz_to_sphere_xyz(cube_xyzs):
(x,y,z) = [float(xyz) for xyz in cube_xyzs]
(x_squared,y_squared,z_squared) = (x * x,y * y,z * z)
return (x * (1 - (y_squared + z_squared) / 2 + y_squared * z_squared / 3) ** 0.5,
y * (1 - (x_squared + z_squared) / 2 + x_squared * z_squared / 3) ** 0.5,
z * (1 - (y_squared + x_squared) / 2 + y_squared * x_squared / 3) ** 0.5)
def xyz_to_lla(xyzs):
(x,y,z) = xyzs
alt = (x * x + y * y + z * z) ** 0.5
lon = math.atan2(y, x)
lat = math.asin(z / alt)
return (lat,lon,alt)
deg_90 = math.pi / 2
def find_alt(lat_lons, altss):
(lat,lon) = lat_lons
if (lat == deg_90): alt = average(altss[ 0])
elif (lat == -deg_90): alt = average(altss[-1])
else:
(width,height) = (len(altss[0]),len(altss))
x = (0.5 + lon / (deg_90 * 4) + lat_offset) * width
y = (0.5 - lat / (deg_90 * 2) ) * height
(x_int,y_int) = (int(x) , int(y) )
(x_dec,y_dec) = (x - x_int, y - y_int)
(x0,x1) = (x_int % width , (x_int + 1) % width )
(y0,y1) = (y_int % height, (y_int + 1) % height)
alt = ((altss[y0][x0] * (1 - x_dec) + altss[y1][x0] * x_dec) * (1 - y_dec) +
(altss[y0][x1] * (1 - x_dec) + altss[y1][x1] * x_dec) * y_dec)
# print(map(math.degrees, lat_lons), y,x, alt)
return alt
def radius_wgs84(lat):
if (lat in radius_wgs84.cachess): return radius_wgs84.cachess[lat]
(sin_lat, cos_lat) = (math.sin(lat), math.cos(lat))
ff = (1 - f_wgs84) ** 2
c = 1 / (cos_lat ** 2 + ff * sin_lat ** 2) ** 0.5
s = c * ff
radius_c_s_s = (radius_datum * c, radius_datum * s)
radius_wgs84.cachess[lat] = radius_c_s_s
return radius_c_s_s
radius_wgs84.cachess = {}
def lla_to_sphere_xyz(llas):
(lat,lon,alt) = llas
(sin_lat,sin_lon) = (math.sin(lat),math.sin(lon))
(cos_lat,cos_lon) = (math.cos(lat),math.cos(lon))
(radius_c, radius_s) = [(c_s_radius + alt * km_per_luma) * scale
for c_s_radius in radius_wgs84(lat)]
return (radius_c * cos_lat * cos_lon,radius_c * cos_lat * sin_lon,radius_s * sin_lat)
def xyz_alt_to_xyza(xyzs, altss):
(lat,lon,alt) = xyz_to_lla(xyzs)
alt = find_alt((lat,lon), altss)
lla_alts = [list(lla_to_sphere_xyz((lat,lon,alt))), alt]
return lla_alts
log("Read elevation data")
png_alt = Png(path_png_alt)
if (png_alt.metadatas['planes'] != 1): print("%s not 1-channel PNG" % (path_png_alt)); sys.exit(1)
log(png_alt)
altss = [[png_alt.pixels[png_alt.width * y + x] - luma_datum
for x in range(png_alt.width)] for y in range(png_alt.height)] ## altss[y][x]
log("Find vertices")
k = 2.0 / n_division
range_k = range(n_division + 1)
face_vertex_llassss = [ ## [0=top][i_y][i_x][xyz,alt]
[[xyz_alt_to_xyza((x*k-1,y*k-1, 1), altss) for y in range_k] for x in range_k],
[[xyz_alt_to_xyza((x*k-1, -1,y*k-1), altss) for y in range_k] for x in range_k],
[[xyz_alt_to_xyza(( 1,x*k-1,y*k-1), altss) for y in range_k] for x in range_k],
[[xyz_alt_to_xyza((y*k-1,x*k-1, -1), altss) for y in range_k] for x in range_k],
[[xyz_alt_to_xyza((y*k-1, 1,x*k-1), altss) for y in range_k] for x in range_k],
[[xyz_alt_to_xyza(( -1,y*k-1,x*k-1), altss) for y in range_k] for x in range_k],
]
log("Add facets") ## cube xyz -> ll(a) -> image xy -> a -> sphere xyz
facetss = []
for (i_face,face_vertex_llasss) in enumerate(face_vertex_llassss):
for v in range(n_division):
for u in range(n_division):
(xyz00, alt00) = face_vertex_llasss[v ][u ]
(xyz01, alt01) = face_vertex_llasss[v ][u + 1]
(xyz10, alt10) = face_vertex_llasss[v + 1][u ]
(xyz11, alt11) = face_vertex_llasss[v + 1][u + 1]
(xyz_m, alt_m) = xyz_alt_to_xyza([average(xyzs) for xyzs in zip(*(xyz00,xyz01,xyz10,xyz11))],
altss)
if (alt_m > max(alt00,alt01,alt10,alt11) or alt_m < min(alt00,alt01,alt10,alt11)):
facetss.append([None,0,0] + xyz_m + xyz00 + xyz10)
facetss.append([None,0,0] + xyz_m + xyz10 + xyz11)
facetss.append([None,0,0] + xyz_m + xyz11 + xyz01)
facetss.append([None,0,0] + xyz_m + xyz01 + xyz00)
else:
if (abs(alt00 - alt11) < abs(alt01 - alt10)):
facetss.append([None,0,0] + xyz00 + xyz10 + xyz11)
facetss.append([None,0,0] + xyz11 + xyz01 + xyz00)
else:
facetss.append([None,0,0] + xyz10 + xyz11 + xyz01)
facetss.append([None,0,0] + xyz01 + xyz00 + xyz10)
log("Calculate normals")
for facets in facetss:
if (facets[0] is None or facets[1] is None or facets[2] is None):
us = [facets[i_xyz + 9] - facets[i_xyz + 6] for i_xyz in range(3)]
vs = [facets[i_xyz + 6] - facets[i_xyz + 3] for i_xyz in range(3)]
normals = [us[1]*vs[2] - us[2]*vs[1], us[2]*vs[0] - us[0]*vs[2], us[0]*vs[1] - us[1]*vs[0]]
normal_length = sum([component * component for component in normals]) ** 0.5
facets[:3] = [-round(component / normal_length, 10) for component in normals]
# log(tabbify([['N%s' % (xyz ) for xyz in list('xyz')] +
# ['%s%d' % (xyz, n) for n in range(3) for xyz in list('XYZ')] + ['RGB']] + facetss))
log("Compile STL")
outss = ([[('STL\n\n%-73s\n\n' % (header[:73])).encode('utf-8'), struct.pack('<L',len(facetss))]] +
[[struct.pack('<f',float(value)) for value in facets[:12]] +
[struct.pack('<H',0 if (len(facets) <= 12) else
viscam_colour(facets[12]))] for facets in facetss])
out = b''.join([bytes(out) for outs in outss for out in outs])
# out += ('\n\n## Python script to generate STL\n\n%s\n' % (open(__file__).read())).encode('utf-8')
log("Write STL")
with open(__file__[:__file__.rfind('.')] + '.stl', 'wb') as f_out: f_out.write(out)
log("#bytes:%d\t#facets:%d\ttitle:\"%-73s\"" % (len(out), len(facetss), header[:73]))
授權條款
我,本作品的著作權持有者,決定用以下授權條款發佈本作品:
此檔案採用創用CC 姓名標示-相同方式分享 4.0 國際授權條款。
- 您可以自由:
- 分享 – 複製、發佈和傳播本作品
- 重新修改 – 創作演繹作品
- 惟需遵照下列條件:
- 姓名標示 – 您必須指名出正確的製作者,和提供授權條款的連結,以及表示是否有對內容上做出變更。您可以用任何合理的方式來行動,但不得以任何方式表明授權條款是對您許可或是由您所使用。
- 相同方式分享 – 如果您利用本素材進行再混合、轉換或創作,您必須基於如同原先的相同或兼容的條款,來分布您的貢獻成品。
The uploader of this file has agreed to the Wikimedia Foundation 3D patent license: This file and any 3D objects depicted in the file are both my own work. I hereby grant to each user, maker, or distributor of the object depicted in the file a worldwide, royalty-free, fully-paid-up, nonexclusive, irrevocable and perpetual license at no additional cost under any patent or patent application I own now or in the future, to make, have made, use, offer to sell, sell, import, and distribute this file and any 3D objects depicted in the file that would otherwise infringe any claims of any patents I hold now or in the future. Please note that in the event of any differences in meaning or interpretation between the original English version of this license and a translation, the original English version takes precedence. |
在此檔案描寫的項目
描繪內容
3 4 2018
檔案歷史
點選日期/時間以檢視該時間的檔案版本。
日期/時間 | 縮圖 | 尺寸 | 使用者 | 備註 | |
---|---|---|---|---|---|
目前 | 2018年4月16日 (一) 00:15 | 5,120 × 2,880(27.93 MB) | Cmglee | Fix facets facing wrong way, subdivide facets with local minima/maxima and rotate planet to show Valles Marineris. | |
2018年4月12日 (四) 18:25 | 5,120 × 2,880(22.89 MB) | Cmglee | Use cubic subdivision to allow smoother terrain by triangulating each quadrilateral along diagonal with the smaller height difference. | ||
2018年4月4日 (三) 22:09 | 5,120 × 2,880(25 MB) | Cmglee | Use octahedron subdivision to increase resolution and fix poles. | ||
2018年4月3日 (二) 00:40 | 5,120 × 2,880(24.72 MB) | Cmglee | User created page with UploadWizard |
檔案用途
下列頁面有用到此檔案:
全域檔案使用狀況
以下其他 wiki 使用了這個檔案:
- ar.wikiversity.org 的使用狀況
- ca.wikipedia.org 的使用狀況
- crh.wikipedia.org 的使用狀況
- el.wikipedia.org 的使用狀況
- en.wikipedia.org 的使用狀況
- es.wikipedia.org 的使用狀況
- he.wikipedia.org 的使用狀況
- hr.wikipedia.org 的使用狀況
- myv.wikipedia.org 的使用狀況
- pt.wikipedia.org 的使用狀況
- test.wikidata.org 的使用狀況
- tg.wikipedia.org 的使用狀況
- tt.wikipedia.org 的使用狀況
- vi.wikipedia.org 的使用狀況
- www.wikidata.org 的使用狀況
隱藏分類: