跳转到内容

File:Regression pic assymetrique.gif

页面内容不支持其他语言。
这个文件来自维基共享资源
维基百科,自由的百科全书

Regression_pic_assymetrique.gif (610 × 460像素,文件大小:22 KB,MIME类型:image/gif、​循环、​10帧、​5.0秒)


摘要

描述
English: Successive steps of Gauss-Newton regression, with variable damping factor α, to fit a dissymetrical noisy peak. Pictures created with Scilab, animated with The Gimp.
Français : Étapes successives d'une régression de Gauss-Newton, avec facteur d'amortissement α variable, pour ajuster un pic assymétrique. Images créées avec Scilab ; animation créée avec The Gimp.
日期
来源 自己的作品
作者 Cdang (Christophe Dang Ngoc Chan)

Scilab source

Le fichier de données et celui de fonctions communes sont identiques à ceux de File:Regression pic gaussien dissymetrique bruite.svg.

// **********
// Constantes et initialisation
// **********

clear;
clf;

chdir('monchemin/')

// Paramètres de Newton-Raphson
precision = 1e-7; // condition d'arrêt
itermax = 60; // idem
 
// Précision de la linéarisation approchée
epsilon = 1e-6;
 
// **********
// Fonctions
// **********
 
exec('fonctions_communes.sce', -1)
 
function [e] = res(Yexp, Ycal)
    e = sqrt(sum((Yexp-Ycal).^2));
endfunction
 
function [A, R] = gaussnewton(f, X, Yexp, A0, imax, epsilon)
    // A : jeu de paramètres optimisé par régression (vecteur)
    // R : liste des facteurs de qualité de la régression
    // pour chaque étape (vecteur)
    // X : variable explicative (vecteur)
    // Yexp : variable expliquée, valeurs mesurées (vecteur)
    // A0 : paramètres d'initialisation du modèle (vecteur)
    // epsilon : valeur d'arrêt (scalaire)
    k = 1; // facteur d'amortissement initial, <=1,
    // évite la divergence 
    n = size(X,'*');
    e0 = sqrt(sum(Yexp.^2)); // normalisation du facteur de qualité
    Ycal = f(A0, X); // modèle initial
    R(1) = res(Yexp, Ycal)/e0; // facteur de qualité initial
    disp('i = 1 ; k = 1 ; R = '+string(R(1))) // affichage param initiaux
    i = 1;
    B = A0;
        subplot(2,1,1)
        plot2d(X, Yexp, rect=[-3, -2, 3, 12])
        plot(X, Ycal, "-r")
        xstring(-2.8, -1.5, string(B))
        subplot(2,1,2)
        plot2d(R, rect=[1, 0, 10, 1])
        xstring(1.2, 0.1, 'α = '+string(k)+' ; R = '+string(R(i)))
        nom = 'picassym'+string(i)+'.gif';
        xs2gif(0,nom)
    drapeau = %t;
    while (i < imax) & drapeau // teste la convergence globale
        i = i+1;
        deltay = Yexp - Ycal;
        J = linearisation_approchee(f, B, X, epsilon); // matrice jacobienne
        tJ = J'; // transposée
        deltap0 = inv((tJ*J))*tJ*deltay;
        drapeau2 = %t // pour une 1re exécution
        while drapeau2 & (k>0.1) // teste la divergence sur 1 étape
            deltap = k*deltap0;
            Bnouveau = B + deltap';
            Ycal = f(Bnouveau, X);
            R(i) = res(Yexp, Ycal)/e0;
            drapeau2 = (R(i) >= R(i-1)) // vrai si diverge
            if drapeau2 then k = k*0.75; // atténue si diverge
            else k0 = k; // pour affichage de la valeur
                k = (1 + k)/2; // réduit l'atténuation si converge
            end
        end
        B = Bnouveau;
        drapeau = abs(R(i-1) - R(i)) > epsilon
        clf;
        subplot(2,1,1)
        plot2d(X, Yexp, rect=[-3, -2, 3, 12])
        plot(X, Ycal, "-r")
        xstring(-2.8, -1.5, string(B))
        subplot(2,1,2)
        plot2d(R, rect=[1, 0, 10, 1])
        xstring(1.2, 0.1, 'α = '+string(k0)+' ; R = '+string(R(i)))
        nom = 'picassym'+string(i)+'.gif';
        xs2gif(0,nom)
//        disp('i = '+string(i)+' ; k = '+string(k0)+' ; R = '+string(R(i)))
    end
    A = B;
endfunction
 
// **********
// Programme principal
// **********
 
// lecture des données
donnees = read('pic_gauss_dissym_bruite.txt',-1,2);
 
// carcatéristiques des données
Xdef = donnees(:,1);
Ydef = donnees(:,2);
// Ainit = [-0.03, 9.7, 8*((0.84 - 0.03)/2.35)^2, 8*((0.45 + 0.03)/2.35)^2];
Ainit = [1, 1, 1, 1];

// Régression
tic();
[Aopt, Rnr] =...
    gaussnewton(gauss_dissym, Xdef, Ydef,...
    Ainit, itermax, precision)
t = toc();

// Courbe calculée
 
Yopt = gauss_dissym(Aopt, Xdef);
 
// Affichage
 
print(%io(2),Ainit)
print(%io(2),Aopt)
print(%io(2),t)
 
clf
 
subplot(2,1,1)
plot(Xdef, Ydef, "-b")
plot(Xdef, Yopt, "-r")
 
subplot(2,1,2)
plot(Rnr)

许可协议

我,本作品著作权人,特此采用以下许可协议发表本作品:
GNU head 已授权您依据自由软件基金会发行的无固定段落及封面封底文字(Invariant Sections, Front-Cover Texts, and Back-Cover Texts)的GNU自由文件许可协议1.2版或任意后续版本的条款,复制、传播和/或修改本文件。该协议的副本请见“GNU Free Documentation License”。
w:zh:知识共享
署名 相同方式共享
本文件采用知识共享署名-相同方式共享3.0 未本地化版本2.5 通用2.0 通用1.0 通用许可协议授权。
您可以自由地:
  • 共享 – 复制、发行并传播本作品
  • 修改 – 改编作品
惟须遵守下列条件:
  • 署名 – 您必须对作品进行署名,提供授权条款的链接,并说明是否对原始内容进行了更改。您可以用任何合理的方式来署名,但不得以任何方式表明许可人认可您或您的使用。
  • 相同方式共享 – 如果您再混合、转换或者基于本作品进行创作,您必须以与原先许可协议相同或相兼容的许可协议分发您贡献的作品。
您可以选择您需要的许可协议。

说明

添加一行文字以描述该文件所表现的内容

此文件中描述的项目

描绘内容

image/gif

文件历史

点击某个日期/时间查看对应时刻的文件。

日期/时间缩⁠略⁠图大小用户备注
当前2012年12月5日 (三) 13:132012年12月5日 (三) 13:13版本的缩略图610 × 460(22 KB)Cdang{{Information |Description ={{en|1=alpha (damping factor) value corrected}} |Source ={{own}} |Author =Cdang |Date = |Permission = |other_versions = }}
2012年12月5日 (三) 13:092012年12月5日 (三) 13:09版本的缩略图610 × 460(22 KB)Cdang{{Information |Description ={{en|1=Successive steps of Gauss-Newton regression, with variable damping factor α, to fit a dissymetrical noisy peak. Pictures created with Scilab, animated with The Gimp.}} {{fr|1=Étapes successives d'une régression...

以下页面使用本文件:

全域文件用途

以下其他wiki使用此文件:

元数据