格利泽514
观测资料 历元 J2000 | |
---|---|
星座 | 处女座 |
星官 | |
赤经 | 13h 29m 59.7859s[1] |
赤纬 | 10° 22′ 37.7845″[1] |
视星等(V) | 9.029 |
特性 | |
演化阶段 | 主序星 |
光谱分类 | M0Ve[2] |
视星等 (J) | 5.902+0.018 −[3] |
视星等 (H) | 5.300+0.033 −[3] |
天体测定 | |
径向速度 (Rv) | 14.606[4] km/s |
自行 (μ) | 赤经:1,127.34+0.03 −[5] mas/yr 赤纬:−1,073.888+0.013 −[5] mas/yr |
视差 (π) | 131.1013 ± 0.0270[5] mas |
距离 | 24.878 ± 0.005 ly (7.628 ± 0.002 pc) |
绝对星等 (MV) | 5.89[6] |
详细资料 | |
质量 | 0.526[7] M☉ |
半径 | 0.611+0.043 −[7] R☉ |
表面重力 (log g) | 4.59[7] |
亮度 (bolometric) | 0.043[7] L☉ |
温度 | 2,901[6] - 3,727[3] K |
金属量 [Fe/H] | ±0.07 −0.07[3] dex |
自转 | 28.0+2.9 −[8] |
自转速度 (v sin i) | 2.00[9] km/s |
年龄 | 8.25[10] Gyr |
其他命名 | |
参考资料库 | |
SIMBAD | 资料 |
格利泽514,又称BD+11 2576或HIP 65859, 是一颗位于处女座的红矮星,距离太阳约24.87光年。[11]
格利泽514的金属量Fe/H指数在很大程度上是未知的,数据的中值为-0.4至+0.18。这种差异是由于Gliese 514的恒星光谱的特殊性造成的。光谱的特殊性也会影响恒星温度测量的准确性,[9] 数值可低至2901 K。[6]格利泽514的光谱显示出发射线[2],但恒星本身的星斑活动很低。[12]
截至2020年,并没有发现任何恒星伴星。[13]
目前计算太阳正穿过格利泽 514的奥尔特云尾部。因此,未来穿越太阳系的星际天体可能源自格利泽 514。[14]
行星系统
自2019年以来,人们怀疑在格利泽 514周围存在一个以轨道周期为15天运行的行星。[15] 但是,该行星尚未得到证实。相反,在2022年,一颗名为格利泽 514 b的超级地球行星通过视向速度法在偏心140天的轨道上被发现。行星轨道部分位于母星宜居带内,行星平衡温度沿轨道平均为202 K。[8]
成员 (依恒星距离) |
质量 | 半长轴 (AU) |
轨道周期 (天) |
离心率 | 倾角 | 半径 |
---|---|---|---|---|---|---|
b | >5.2+0.9 − M⊕ |
0.422+0.014 −0.015 |
140.43+0.41 − |
0.45+0.15 −0.14 |
— | — |
参考
- ^ 1.0 1.1 1.2 BD+11 2576. SIMBAD. 斯特拉斯堡天文资料中心.
- ^ 2.0 2.1 Lindegren, Lennart; Dravins, Dainis, Astrometric radial velocities for nearby stars, Astronomy & Astrophysics, 2021, 652: A45, Bibcode:2021A&A...652A..45L, S2CID 234778154, arXiv:2105.09014 , doi:10.1051/0004-6361/202141344
- ^ 3.0 3.1 3.2 3.3 Lindgren, Sara; Heiter, Ulrike, Metallicity determination of M dwarfs, Astronomy & Astrophysics, 2017, 604: A97, Bibcode:2017A&A...604A..97L, S2CID 119216828, arXiv:1705.08785 , doi:10.1051/0004-6361/201730715
- ^ Manara, C. F.; et al, PENELLOPE: The ESO data legacy program to complement the Hubble UV Legacy Library of Young Stars (ULLYSES), Astronomy & Astrophysics, 2021, 650: A196, S2CID 232320330, arXiv:2103.12446 , doi:10.1051/0004-6361/202140639
- ^ 5.0 5.1 5.2 Brown, A. G. A.; et al. Gaia Early Data Release 3: Summary of the contents and survey properties. Astronomy & Astrophysics. 2021, 649: A1. Bibcode:2021A&A...649A...1G. S2CID 227254300. arXiv:2012.01533 . doi:10.1051/0004-6361/202039657 . 已忽略未知参数
|collaboration=
(帮助) (勘误: doi:10.1051/0004-6361/202039657e). Gaia EDR3 record for this source at VizieR. - ^ 6.0 6.1 6.2 Ghosh, Samrat; Ghosh, Supriyo; Das, Ramkrishna; Mondal, Soumen; Khata, Dhrimadri, Understanding the physical properties of young M dwarfs: NIR spectroscopic studies, Monthly Notices of the Royal Astronomical Society, 2020, 493 (3): 4533–4550, arXiv:2002.05762 , doi:10.1093/mnras/staa427
- ^ 7.0 7.1 7.2 7.3 Berger, D. H.; Gies, D. R.; McAlister, H. A.; Brummelaar, T. A. ten; Henry, T. J.; Sturmann, J.; Sturmann, L.; Turner, N. H.; Ridgway, S. T.; Aufdenberg, J. P.; Merand, A., First Results from the CHARA Array. IV. The Interferometric Radii of Low‐Mass Stars, The Astrophysical Journal, 2006, 644 (1): 475–483, Bibcode:2006ApJ...644..475B, S2CID 14966363, arXiv:astro-ph/0602105 , doi:10.1086/503318
- ^ 8.0 8.1 8.2 Damasso, M.; et al, A quarter century of spectroscopic monitoring of the nearby M dwarf Gl 514, Astronomy & Astrophysics, 2022, 666: A187, S2CID 248157318, arXiv:2204.06376 , doi:10.1051/0004-6361/202243522
- ^ 9.0 9.1 Olander, T.; Heiter, U.; Kochukhov, O., Comparative high-resolution spectroscopy of M dwarfs: Exploring non-LTE effects, Astronomy & Astrophysics, 2021, 649: A103, Bibcode:2021A&A...649A.103O, S2CID 231942628, arXiv:2102.08836 , doi:10.1051/0004-6361/202039747
- ^ Maldonado, J.; Micela, G.; Baratella, M.; d'Orazi, V.; Affer, L.; Biazzo, K.; Lanza, A. F.; Maggio, A.; González Hernández, J. I.; Perger, M.; Pinamonti, M.; Scandariato, G.; Sozzetti, A.; Locci, D.; Di Maio, C.; Bignamini, A.; Claudi, R.; Molinari, E.; Rebolo, R.; Ribas, I.; Toledo-Padrón, B.; Covino, E.; Desidera, S.; Herrero, E.; Morales, J. C.; Suárez-Mascareño, A.; Pagano, I.; Petralia, A.; Piotto, G.; Poretti, E. HADES RV programme with HARPS-N at TNG. XII. The abundance signature of M dwarf stars with planets. Astronomy and Astrophysics. 2020, 644: A68. Bibcode:2020A&A...644A..68M. S2CID 225094682. arXiv:2010.14867 . doi:10.1051/0004-6361/202039478.
- ^ Determinations of the parallaxes of BD +11 2576 and BD +18 683. [2023-03-24]. (原始内容存档于2023-03-07).
- ^ Reiners, A., The narrowest M-dwarf line profiles and the rotation-activity connection at very slow rotation, Astronomy and Astrophysics, 2007, 467 (1): 259, Bibcode:2007A&A...467..259R, S2CID 8672566, arXiv:astro-ph/0702634 , doi:10.1051/0004-6361:20066991
- ^ Lamman, Claire; Baranec, Christoph; Berta-Thompson, Zachory K.; Law, Nicholas M.; Schonhut-Stasik, Jessica; Ziegler, Carl; Salama, Maïssa; Jensen-Clem, Rebecca; Duev, Dmitry A.; Riddle, Reed; Kulkarni, Shrinivas R.; Winters, Jennifer G.; Irwin, Jonathan M., Robo-AO M-dwarf Multiplicity Survey: Catalog, The Astronomical Journal, 2020, 159 (4): 139, Bibcode:2020AJ....159..139L, S2CID 210718832, arXiv:2001.05988 , doi:10.3847/1538-3881/ab6ef1
- ^ Portegies Zwart, S., Oort cloud Ecology, Astronomy & Astrophysics, 2021, 647: A136, S2CID 226976082, arXiv:2011.08257 , doi:10.1051/0004-6361/202038888
- ^ Barnes, J. R.; et al. Frequency of planets orbiting M dwarfs in the Solar neighbourhood. 2019-06-11. arXiv:1906.04644 [astro-ph.EP] (英语).
- ^ Tanner, Angelle; Plavchan, Peter; Bryden, Geoff; Kennedy, Grant; Matrá, Luca; Cronin-Coltsmann, Patrick; Lowrance, Patrick; Henry, Todd; Riaz, Basmah; Gizis, John E.; Riedel, Adric; Choquet, Elodie, Herschel Observations of Disks around Late-type Stars, Publications of the Astronomical Society of the Pacific, 2020, 132 (1014): 084401, Bibcode:2020PASP..132h4401T, S2CID 216553868, arXiv:2004.12597 , doi:10.1088/1538-3873/ab895f