跳转到内容

𨧀

本页使用了标题或全文手工转换
维基百科,自由的百科全书
(重定向自元素105

𨧀 105Db
氫(非金屬) 氦(惰性氣體)
鋰(鹼金屬) 鈹(鹼土金屬) 硼(類金屬) 碳(非金屬) 氮(非金屬) 氧(非金屬) 氟(鹵素) 氖(惰性氣體)
鈉(鹼金屬) 鎂(鹼土金屬) 鋁(貧金屬) 矽(類金屬) 磷(非金屬) 硫(非金屬) 氯(鹵素) 氬(惰性氣體)
鉀(鹼金屬) 鈣(鹼土金屬) 鈧(過渡金屬) 鈦(過渡金屬) 釩(過渡金屬) 鉻(過渡金屬) 錳(過渡金屬) 鐵(過渡金屬) 鈷(過渡金屬) 鎳(過渡金屬) 銅(過渡金屬) 鋅(過渡金屬) 鎵(貧金屬) 鍺(類金屬) 砷(類金屬) 硒(非金屬) 溴(鹵素) 氪(惰性氣體)
銣(鹼金屬) 鍶(鹼土金屬) 釔(過渡金屬) 鋯(過渡金屬) 鈮(過渡金屬) 鉬(過渡金屬) 鎝(過渡金屬) 釕(過渡金屬) 銠(過渡金屬) 鈀(過渡金屬) 銀(過渡金屬) 鎘(過渡金屬) 銦(貧金屬) 錫(貧金屬) 銻(類金屬) 碲(類金屬) 碘(鹵素) 氙(惰性氣體)
銫(鹼金屬) 鋇(鹼土金屬) 鑭(鑭系元素) 鈰(鑭系元素) 鐠(鑭系元素) 釹(鑭系元素) 鉕(鑭系元素) 釤(鑭系元素) 銪(鑭系元素) 釓(鑭系元素) 鋱(鑭系元素) 鏑(鑭系元素) 鈥(鑭系元素) 鉺(鑭系元素) 銩(鑭系元素) 鐿(鑭系元素) 鎦(鑭系元素) 鉿(過渡金屬) 鉭(過渡金屬) 鎢(過渡金屬) 錸(過渡金屬) 鋨(過渡金屬) 銥(過渡金屬) 鉑(過渡金屬) 金(過渡金屬) 汞(過渡金屬) 鉈(貧金屬) 鉛(貧金屬) 鉍(貧金屬) 釙(貧金屬) 砈(類金屬) 氡(惰性氣體)
鍅(鹼金屬) 鐳(鹼土金屬) 錒(錒系元素) 釷(錒系元素) 鏷(錒系元素) 鈾(錒系元素) 錼(錒系元素) 鈽(錒系元素) 鋂(錒系元素) 鋦(錒系元素) 鉳(錒系元素) 鉲(錒系元素) 鑀(錒系元素) 鐨(錒系元素) 鍆(錒系元素) 鍩(錒系元素) 鐒(錒系元素) 鑪(過渡金屬) 𨧀(過渡金屬) 𨭎(過渡金屬) 𨨏(過渡金屬) 𨭆(過渡金屬) 䥑(預測為過渡金屬) 鐽(預測為過渡金屬) 錀(預測為過渡金屬) 鎶(過渡金屬) 鉨(預測為貧金屬) 鈇(貧金屬) 鏌(預測為貧金屬) 鉝(預測為貧金屬) 鿬(預測為鹵素) 鿫(預測為惰性氣體)


𨧀

(Upp)
𨧀𨭎
概況
名稱·符號·序數𨧀(Dubnium)·Db·105
元素類別過渡金屬
·週期·5·7·d
標準原子質量[268]
电子排布[Rn] 5f14 6d3 7s2
(預測)

2, 8, 18, 32, 32, 11, 2
(預測)
𨧀的电子層(2, 8, 18, 32, 32, 11, 2 (預測))
𨧀的电子層(2, 8, 18, 32, 32, 11, 2
(預測))
物理性質
物態固體(預測)
原子性質
氧化态5
共价半径149 (預測)[1] pm
雜項
CAS号53850-35-4
同位素
主条目:𨧀的同位素
同位素 丰度 半衰期t1/2 衰變
方式 能量MeV 產物
262Db[2] 人造 33.8  SF - -
α 8.46, 8.68 258Lr
267Db[3] 人造 1.4 小時 SF - -
268Db[4] 人造 16 小時 α 7.6-8.0 264Lr
SF - -
270Db[5] 人造 1.0 小時 α 7.90 266Lr
SF - -

𨧀(英語:Dubnium),是一種人工合成化學元素,其化學符號Db原子序數为105。𨧀是一種極具放射性超重元素錒系後元素,其最穩定的已知同位素𨧀-268的半衰期約為16小時,这也是原子序大於101()的元素中最长寿的同位素。𨧀不出現在自然界中,只能在實驗室內以粒子加速器少量合成。其英文名Dubnium源自位於俄羅斯的小鎮杜布納(Dubna),也是𨧀最早被合成出的地方。

元素週期表中,𨧀是一個位於d區塊過渡金屬,為第7週期第5族的成員。目前人們對𨧀的化學特性所知不多,但化學實驗已証實了𨧀具有比更重的同族元素應有的屬性。

在1960年代,蘇聯美國加州的實驗室製造了微量的𨧀元素。兩國未能確定彼此的發現次序,因此雙方科學家對其命名發生了爭論,直到1997年國際純粹與應用化學聯合會(IUPAC)確認了蘇聯的實驗室最早合成該元素,並為雙方妥協而取名為Dubnium。

概论

超重元素的合成

核聚变图示
核聚变反应的图示。两个原子核融合成一个,并发射出一个中子。这个反应和用来创造新元素的反应相似,唯一可能的区别是它有时会释放几个中子,或者根本不释放中子。
外部视频链接
video icon 基于澳大利亚国立大学的计算,核聚变未成功的可视化[6]

超重元素[a]原子核是在两个不同大小的原子核[b]的聚变中产生的。粗略地说,两个原子核的质量之差越大,两者就越有可能发生反应。[12]由较重原子核组成的物质会作為靶子,被较轻原子核的粒子束轰击。两个原子核只能在距离足够近的时候,才能聚变成一个原子核。原子核都带正电荷,会因为静电排斥力而相互排斥,所以只有两个原子核的距离足够短时,强核力才能克服这个排斥力并发生聚变。粒子束因此被粒子加速器大大加速,以使这种排斥力与粒子束的速度相比变得微不足道。[13]施加到粒子束上以加速它们的能量可以使它们的速度达到光速的十分之一。但是,如果施加太多能量,粒子束可能会分崩离析。[13]

不过,只是靠得足够近不足以使两个原子核聚变:当两个原子核逼近彼此时,它们通常会融為一體约10−20秒,之後再分開(分開後的原子核不需要和先前相撞的原子核相同),而非形成单一的原子核。[13][14]这是因为在尝试形成单个原子核的过程中,静电排斥力会撕开正在形成的原子核。[13]每一对目标和粒子束的特征在于其截面,即两个原子核彼此接近时发生聚变的概率。[c]这种聚变是量子效应的结果,其中原子核可通过量子穿隧效應克服静电排斥力。如果两个原子核可以在该阶段之后保持靠近,则多个核相互作用会导致能量的重新分配和平衡。[13]

两个原子核聚变产生的原子核处于非常不稳定,[13]被称为复合原子核英语compound nucleus激发态[16]复合原子核为了达到更稳定的状态,可能会直接裂变[17]或是放出一些中子来带走激发能量。如果激发能量太小,无法放出中子,复合原子核就会放出γ射线来带走激发能量。这个过程会在原子核碰撞后的10−16秒发生,并创造出更稳定的原子核。[17]原子核只有在10−14秒内不衰变IUPAC/IUPAP联合工作小组才会认为它是化学元素。这个值大约是原子核得到它的外层电子,显示其化学性质所需的时间。[18][d]

衰变和探测

粒子束穿过目标后,会到达下一个腔室——分离室。如果反应产生了新的原子核,它就会存在于这个粒子束中。[20]在分离室中,新的原子核会从其它核素(原本的粒子束和其它反应产物)中分离,[e]到达半导体探测器英语Semiconductor detector后停止。这时标记撞击探测器的确切位置、能量和到达时间。[20]这个转移需要10−6秒的时间,因此原子核需要存在这么长的时间才能被检测到。[23]若衰变發生,衰變的原子核被再次记录,并测量位置、衰变能量和衰变时间。[20]

原子核的稳定性源自于强核力,但强核力的作用距离很短,随着原子核越来越大,强核力对最外层的核子质子和中子)的影响减弱。同时,原子核会被质子之间,范围不受限制的静电排斥力撕裂。[24]强核力提供的核结合能以线性增长,而静电排斥力则以原子序数的平方增长。后者增长更快,对重元素和超重元素而言变得越来越重要。[25][26]超重元素理论预测[27]及实际观测到[28]的主要衰变方式,即α衰变自发裂变都是这种排斥引起的。[f]几乎所有会α衰变的核素都有超过210个核子,[30]而主要通过自发裂变衰变的最轻核素有238个核子。[28]有限位势垒在这两种衰变方式中抑制了原子核衰变,但原子核可以隧穿这个势垒,发生衰变。[25][26]

Apparatus for creation of superheavy elements
基于在杜布纳联合原子核研究所中设置的杜布纳充气反冲分离器,用于产生超重元素的装置方案。在检测器和光束聚焦装置内的轨迹会因为前者的磁偶极英语Magnetic dipole和后者的四极磁体英语Quadrupole magnet而改变。[31]

放射性衰变中常产生α粒子是因为α粒子中的核子平均质量足够小,足以使α粒子有多余能量离开原子核。[32]自发裂变则是由静电排斥力将原子核撕裂而致,会产生各种不同的产物。[26]随着原子序数增加,自发裂变迅速变得重要:自发裂变的部分半衰期从92号元素到102号元素下降了23个数量级,[33]从90号元素到100号元素下降了30个数量级。[34]早期的液滴模型因此表明有约280个核子的原子核的裂变势垒英语Fission barrier会消失,因此自发裂变会立即发生。[26][35]之后的核壳层模型表明有大约300个核子的原子核将形成一个稳定岛,其中的原子核不易发生自发裂变,而是会发生半衰期更长的α衰变。[26][35]随后的研究发现预测存在的稳定岛可能比原先预期的更远,还发现长寿命锕系元素和稳定岛之间的原子核发生变形,获得额外的稳定性。[36]对较轻的超重核素[37]以及那些更接近稳定岛的核素[33]的实验发现它们比先前预期的更难发生自发裂变,表明核壳层效应变得重要。[g]

α衰变由发射出去的α粒子记录,在原子核衰变之前就能确定衰变产物。如果α衰变或连续的α衰变产生了已知的原子核,则可以很容易地确定反应的原始产物。[h]因为连续的α衰变都会在同一个地方发生,所以通过确定衰变发生的位置,可以确定衰变彼此相关。[20]已知的原子核可以通过它经历的衰变的特定特征来识别,例如衰变能量(或更具体地说,发射粒子的动能)。[i]然而,自发裂变会产生各种分裂产物,因此无法从其分裂产物确定原始核素。[j]

嘗試合成超重元素的物理学家可以获得的信息是探测器收集到的信息,即原子核到达探测器的位置、能量、时间以及它衰变的信息。他们分析这些数据并试图得出结论,確認它确实是由新元素引起的。如果提供的数据不足以得出创造出来的核素确实是新元素的结论,且对观察到的现象没有其它解释,就可能在解释数据时出现错误。[k]

歷史

發現

位於杜布納聯合核研究所(當時在前蘇聯內)在1968年首次報告發現𨧀元素。研究人員以-22離子撞擊-243目標。他們報告了能量為9.40 MeV和9.70 MeV的α活動,並認為這些活動指向同位素260Db或261Db:

243
95
Am
+ 22
10
Ne
265−x
105
Db
+ x
n

兩年後,杜布納的團隊把產物與NbCl5反應後,對所得的氯化物使用溫度梯度色譜法分離了兩項反應產物。團隊在揮發性氯化物中,辨認出一次2.2秒長的自發裂變活動,有可能來自五氯化𨧀-261(261DbCl5)。

同年,在柏克萊加州大學,由阿伯特·吉奧索領導的團隊以-15離子撞擊-249,肯定性地合成了𨧀-260。𨧀-260的所測得之α衰變半衰期為1.6秒,衰變能量為9.10 MeV,子衰變產物為-256:

249
98
Cf
+ 15
7
N
260
105
Db
+ 4
n

由柏克萊加州大學科學家們得出的結果並沒有證實蘇聯科學家們的研究指出,𨧀-260的衰變能量為9.40 MeV或9.70 MeV的結論。因此餘下𨧀-261為可能成功合成的同位素。在1971年,杜布納的團隊利用改善了的試驗設備重復了他們的實驗,並得以証實𨧀-260的衰變數據,所用反應如下:

243
95
Am
+ 22
10
Ne
260
105
Db
+ 5
n

1976年,杜佈納的團隊繼續用溫度梯度色譜法研究這條反應,並辨認出產物五溴化𨧀-260(260DbBr5)。

1992年,IUPAC/IUPAP鐨後元素工作小組評估了兩個團隊的報告,並決定雙方的研究成果同時證實對𨧀元素的成功合成,因此雙方應共同享有發現者的稱譽。[48]

命名爭議

A photo of Niels Bohr
A photo of Otto Hahn
最初前蘇聯團隊提出把元素105以丹麥核物理學家尼爾斯·玻爾(左)命名為Nielsbohrium(Ns,鉨,目前「」成為113號元素的譯名);美國團隊則最初提出以研究放射性放射化學而著名的德國化學家奧托·哈恩(右)命名。

蘇聯團隊建議名稱Nielsbohrium(Ns),以紀念丹麥核物理學家尼爾斯·玻爾。美國團隊則提出把新元素命名為Hahnium(Ha,𫒢𨮟),以紀念德國化學家奧托·哈恩。因此,Hahnium一名在美洲及西歐廣為科學家們所用,並出現於許多當時的文獻中;而Nielsbohrium用於前蘇聯和東方集團國家。

兩個團隊就此對元素的命名產生了爭議。國際純粹與應用化學聯合會(IUPAC)就採用了臨時的系統命名Unnilpentium(Unp)。為了解決爭議,IUPAC於1994年提出名稱Joliotium(Jl,[來源請求]),紀念法國物理學家弗雷德里克·約里奧-居里。此名原先由蘇聯團隊提議為元素102的名稱,而該元素最後名為(Nobelium)。雙方仍在元素104至106的命名問題上達不到共識。

鑒於國際上对104至107號元素名均存在較大分歧,全國科學技術名詞化學名詞審定委員會根據1997年8月27日IUPAC正式對101至109號元素的重新英文定名,於1998年7月8日重新审定、公佈101至109號元素的中文命名,其中105號元素中文名在《無機化學命名原則》(1980)中曾定为「𰾉」(hǎn,繁体为𫒢,圖:[49],現根據IUPAC決定的英文名Dubnium(Db),改定为「𨧀」(音同「杜」)。名稱源自為獲得該元素作過重要貢獻的前蘇聯杜布納聯合核子研究所的所在地俄羅斯小鎮杜布納[50][51]

IUPAC表示,位於柏克萊的實驗室已經在多個元素的名稱中得到了承認(如),且元素104和106已命名為(以盧瑟福命名)和𨭎(以西博格命名),因此應在元素105的命名上承認俄羅斯團隊對發現元素104、105及106所作出的貢獻。[52][53]

化學特性

推算的屬性

在元素週期表中,元素105預測為6d系中第二個過渡金屬,以及為5族最重的元素,位於之下。因為𨧀直接位於鉭以下,所以也能稱為eka-鉭。5族元素有著明顯的+5氧化態,而該特性在重5族元素中更為穩定。因此𨧀預計會形成穩定的+5態。較重的5族元素也具有+4和+3態,所以𨧀也有可能形成這些具還原性的氧化態。

的化學特性推算,𨧀會與氧反應形成惰性的五氧化物Db2O5。在鹼性環境中,預計會形成鄰𨧀配合物DbO3−
4
。與鹵素反應後,應形成五鹵化物DbX5。鈮和鉭的五鹵化物呈揮發性固態或呈氣態的三角雙錐形單體分子。因此,DbCl5預計將會是一種揮發性固體。同樣,DbF5揮發性將更強。其鹵化物經水解後,即形成鹵氧化物MOX3。因此𨧀的鹵化物DbX5應會和水反應形成DbOX3。根據已知較輕的5族元素與氟離子的反應,預計𨧀在和氟離子反應後會形成一系列氟配合物。其中五氟化物和氟化氫反應後會形成六氟𨧀酸離子DbF
6
。若氟化物過剩,則會形成DbF2−
7
DbOF2−
5
。如果𨧀的特性是鉭的延續,則更高的氟化物濃度會產生DbF3−
8
,因為NbF3−
8
目前是未知的。

實驗化學

通過氣態熱色譜法,對𨧀的化學特性的研究已進行了幾年的時間。這些實驗研究了鈮、鉭和𨧀放射性同位素的相對吸收屬性。結果產生了典型的5族鹵化物及鹵氧化物:DbCl5、DbBr5、DbOCl3及DbOBr3。這些初期實驗的報告通常稱𨧀為Hahnium(中文對應譯為「𫒢」)。

公式 名稱
DbCl5 五氯化𨧀
DbBr5 五溴化𨧀
DbOCl3 氯氧化𨧀
DbOBr3 溴氧化𨧀

同位素

如同其他高原子序的超重元素,𨧀的所有同位素都具有高度放射性,半衰期很短,非常不穩定。目前已知壽命最長的同位素為𨧀-268,半衰期約為16小時[4],這也是原子序大於101()的元素中最长寿的同位素,但這種同位素難以被製成。[54]杜布納聯合原子核研究所於2012年的計算顯示,預計𨧀所有同位素的最長半衰期不會顯著超過一天。[55]

注释

  1. ^ 核物理学中,原子序高的元素可称为重元素,如82号元素。超重元素通常指原子序大于103(也有大于100[7]或112[8]的定义)的元素。有定义认为超重元素等同于锕系后元素,因此认为还未发现的超锕系元素不是超重元素。[9]
  2. ^ 2009年,由尤里·奥加涅相引领的团队发表了他们尝试通过对称的136Xe + 136Xe反应合成𬭶的结果。他们未能在这个反应中观察到单个原子,因此设置截面,即发生核反应的概率的上限为2.5 pb[10]作为比较,发现𬭶的反应208Pb + 58Fe的截面为19+19
    -11
     pb。[11]
  3. ^ 施加到粒子束以加速它的能量也会影响截面。举个例子,在28
    14
    Si
    + 1
    0
    n
    28
    13
    Al
    + 1
    1
    p
    反应中,截面会从12.3 MeV的370 mb变化成18.3 MeV的160 mb,最高值是13.5 MeV的380 mb。[15]
  4. ^ 这个值也是普遍接受的复合原子核寿命上限。[19]
  5. ^ 分离基于产生的原子核会比未反应的粒子束更慢地通过目标这一点。分离器中包含电场和磁场,它们对运动粒子的影响会因粒子的特定速度而被抵消。[21]飞行时间质谱法英语Time-of-flight mass spectrometry和反冲能量的测量也有助于分离,两者结合可以估计原子核的质量。[22]
  6. ^ 不是所有放射性衰变都是因为静电排斥力导致的,β衰变便是弱核力导致的。[29]
  7. ^ 早在1960年代,人们就已经知道原子核的基态在能量和形状上的不同,也知道核子数为幻数时,原子核就会更稳定。然而,当时人们假设超重元素的原子核因为过于畸形,无法形成核子结构。[33]
  8. ^ 超重元素的原子核的质量通常无法直接测量,所以是根据另一个原子核的质量间接计算得出的。[38]2018年,劳伦斯伯克利国家实验室首次直接测量了超重原子核的质量,[39]它的质量是根据转移后原子核的位置确定的(位置有助于确定其轨迹,这与原子核的质荷比有关,因为转移是在有磁铁的情况下完成的)。[40]
  9. ^ 如果在真空中发生衰变,那么由于孤立系统在衰变前后的总动量必须保持守恒,衰变产物也将获得很小的速度。这两个速度的比值以及相应的动能比值与两个质量的比值成反比。衰变能量等于α粒子和衰变产物的已知动能之和。[30]这些计算也适用于实验,但不同之处在于原子核在衰变后不会移动,因为它与探测器相连。
  10. ^ 自发裂变由苏联科学家格奥尔基·弗廖罗夫发现,[41]而他也是杜布纳联合原子核研究所的科学家,所以自发裂变就成了杜布纳联合原子核研究所经常讨论的课题。[42]劳伦斯伯克利国家实验室的科学家认为自发裂变的信息不足以声称合成元素,他们认为对自发裂变的研究还不够充分,无法将其用于识别新元素,因为很难确定复合原子核是不是仅喷射中子,而不是质子或α粒子等带电粒子。[19]因此,他们更喜欢通过连续的α衰变将新的同位素与已知的同位素联系起来。[41]
  11. ^ 举个例子,1957年,瑞典斯德哥尔摩省斯德哥尔摩的诺贝尔物理研究所错误鉴定102号元素。[43]早先没有关于该元素发现的明确声明,所以瑞典、美国、英国发现者将其命名为nobelium。后来证明该鉴定是错误的。[44]次年,劳伦斯伯克利国家实验室无法重现瑞典的结果。他们宣布合成了该元素,但后来也被驳回。[44]杜布纳联合原子核研究所坚持认为他们第一个发现该元素,并建议把新元素命名为joliotium,[45]而这个名称也没有被接受(他们后来认为102号元素的命名是仓促的)。[46]由于nobelium这个名称在三十年间已被广泛使用,因此没有更名。[47]

参考文献

  1. ^ Chemical Data. Dubnium - Db页面存档备份,存于互联网档案馆), Royal Chemical Society
  2. ^ Haba, H.; Huang, M.; Kaji, D.; Kanaya, J.; Kudou, Y.; Morimoto, K.; Morita, K.; Murakami, M.; Ozeki, K.; Sakai, R.; Sumita, T.; Wakabayashi, Y.; Yoneda, A.; Kasamatsu, Y.; Kikutani, Y.; Komori, Y.; Nakamura, K.; Shinohara, A.; Kikunaga, H.; Kudo, H.; Nishio, K.; Toyoshima, A.; Tsukada, K. Production of 262Db in the 248Cm(19F,5n)262Db reaction and decay properties of 262Db and 258Lr. Physical Review C. 28 February 2014, 89 (2): 024618 [2 July 2023]. doi:10.1103/PhysRevC.89.024618. 
  3. ^ Oganessian, Yu. Ts.; Utyonkov, V. K.; Kovrizhnykh, N. D.; et al. New isotope 286Mc produced in the 243Am+48Ca reaction. Physical Review C. 2022, 106 (064306). doi:10.1103/PhysRevC.106.064306. 
  4. ^ 4.0 4.1 Oganessian, Yu. Ts.; Utyonkov, V. K.; Kovrizhnykh, N. D.; et al. First experiment at the Super Heavy Element Factory: High cross section of 288Mc in the243Am+48Ca reaction and identification of the new isotope 264Lr. Physical Review C. 29 September 2022, 106 (3): L031301. Bibcode:2022PhRvC.106c1301O. S2CID 252628992. doi:10.1103/PhysRevC.106.L031301. 
  5. ^ Khuyagbaatar, J.; Yakushev, A.; Düllmann, Ch. E.; et al. 48Ca+249Bk Fusion Reaction Leading to Element Z=117: Long-Lived α-Decaying 270Db and Discovery of 266Lr. Physical Review Letters. 2014, 112 (17): 172501. Bibcode:2014PhRvL.112q2501K. PMID 24836239. S2CID 5949620. doi:10.1103/PhysRevLett.112.172501. hdl:1885/148814可免费查阅. 
  6. ^ Wakhle, A.; Simenel, C.; Hinde, D. J.; et al. Simenel, C.; Gomes, P. R. S.; Hinde, D. J.; et al , 编. Comparing Experimental and Theoretical Quasifission Mass Angle Distributions. European Physical Journal Web of Conferences. 2015, 86: 00061. ISSN 2100-014X. doi:10.1051/epjconf/20158600061可免费查阅. 
  7. ^ Krämer, K. Explainer: superheavy elements. Chemistry World. 2016 [2020-03-15]. (原始内容存档于2021-05-15) (英语). 
  8. ^ Discovery of Elements 113 and 115. Lawrence Livermore National Laboratory. [2020-03-15]. (原始内容存档于2015-09-11). 
  9. ^ Eliav, E.; Kaldor, U.; Borschevsky, A. Electronic Structure of the Transactinide Atoms. Scott, R. A. (编). Encyclopedia of Inorganic and Bioinorganic Chemistry. John Wiley & Sons: 1–16. 2018. ISBN 978-1-119-95143-8. doi:10.1002/9781119951438.eibc2632 (英语). 
  10. ^ Oganessian, Yu. Ts.; Dmitriev, S. N.; Yeremin, A. V.; et al. Attempt to produce the isotopes of element 108 in the fusion reaction 136Xe + 136Xe. Physical Review C. 2009, 79 (2): 024608. ISSN 0556-2813. doi:10.1103/PhysRevC.79.024608 (英语). 
  11. ^ Münzenberg, G.; Armbruster, P.; Folger, H.; et al. The identification of element 108 (PDF). Zeitschrift für Physik A. 1984, 317 (2): 235–236 [20 October 2012]. Bibcode:1984ZPhyA.317..235M. doi:10.1007/BF01421260. (原始内容 (PDF)存档于7 June 2015). 
  12. ^ Subramanian, S. Making New Elements Doesn't Pay. Just Ask This Berkeley Scientist. Bloomberg Businessweek. [2020-01-18]. (原始内容存档于2019-12-11). 
  13. ^ 13.0 13.1 13.2 13.3 13.4 13.5 Ivanov, D. Сверхтяжелые шаги в неизвестное [Superheavy steps into the unknown]. nplus1.ru. 2019 [2020-02-02]. (原始内容存档于2020-04-23) (俄语). 
  14. ^ Hinde, D. Something new and superheavy at the periodic table. The Conversation. 2017 [2020-01-30]. (原始内容存档于2020-03-17) (英语). 
  15. ^ Kern, B. D.; Thompson, W. E.; Ferguson, J. M. Cross sections for some (n, p) and (n, α) reactions. Nuclear Physics. 1959, 10: 226–234. doi:10.1016/0029-5582(59)90211-1 (英语). 
  16. ^ Nuclear Reactions (PDF): 7–8. [2020-01-27]. (原始内容存档 (PDF)于2020-11-30).  Published as Loveland, W. D.; Morrissey, D. J.; Seaborg, G. T. Nuclear Reactions. Modern Nuclear Chemistry. John Wiley & Sons, Inc. 2005: 249–297. ISBN 978-0-471-76862-3. doi:10.1002/0471768626.ch10 (英语). 
  17. ^ 17.0 17.1 Krása, A. Neutron Sources for ADS. Faculty of Nuclear Sciences and Physical Engineering (Czech Technical University in Prague). 2010: 4–8. S2CID 28796927. 
  18. ^ Wapstra, A. H. Criteria that must be satisfied for the discovery of a new chemical element to be recognized (PDF). Pure and Applied Chemistry. 1991, 63 (6): 883 [2021-11-28]. ISSN 1365-3075. doi:10.1351/pac199163060879. (原始内容存档 (PDF)于2021-10-11) (英语). 
  19. ^ 19.0 19.1 Hyde, E. K.; Hoffman, D. C.; Keller, O. L. A History and Analysis of the Discovery of Elements 104 and 105. Radiochimica Acta. 1987, 42 (2): 67–68 [2021-11-27]. ISSN 2193-3405. doi:10.1524/ract.1987.42.2.57. (原始内容存档于2021-11-27). 
  20. ^ 20.0 20.1 20.2 20.3 Chemistry World. How to Make Superheavy Elements and Finish the Periodic Table [Video]. Scientific American. 2016 [2020-01-27]. (原始内容存档于2020-04-21) (英语). 
  21. ^ Hoffman, Ghiorso & Seaborg 2000,第334頁.
  22. ^ Hoffman, Ghiorso & Seaborg 2000,第335頁.
  23. ^ Zagrebaev, V.; Karpov, A.; Greiner, W. Future of superheavy element research: Which nuclei could be synthesized within the next few years?. Journal of Physics: Conference Series. 2013, 420: 3. ISSN 1742-6588. doi:10.1088/1742-6596/420/1/012001可免费查阅. 
  24. ^ Beiser 2003,第432頁.
  25. ^ 25.0 25.1 Pauli, N. Alpha decay (PDF). Introductory Nuclear, Atomic and Molecular Physics (Nuclear Physics Part). Université libre de Bruxelles. 2019 [2020-02-16]. (原始内容存档 (PDF)于2021-11-28). 
  26. ^ 26.0 26.1 26.2 26.3 26.4 Pauli, N. Nuclear fission (PDF). Introductory Nuclear, Atomic and Molecular Physics (Nuclear Physics Part). Université libre de Bruxelles. 2019 [2020-02-16]. (原始内容存档 (PDF)于2021-10-21). 
  27. ^ Staszczak, A.; Baran, A.; Nazarewicz, W. Spontaneous fission modes and lifetimes of superheavy elements in the nuclear density functional theory. Physical Review C. 2013, 87 (2): 024320–1. ISSN 0556-2813. doi:10.1103/physrevc.87.024320可免费查阅. 
  28. ^ 28.0 28.1 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. The NUBASE2020 evaluation of nuclear properties (PDF). Chinese Physics C. 2021, 45 (3): 030001. doi:10.1088/1674-1137/abddae. 
  29. ^ Beiser 2003,第439頁.
  30. ^ 30.0 30.1 Beiser 2003,第433頁.
  31. ^ Aksenov, N. V.; Steinegger, P.; Abdullin, F. Sh.; et al. On the volatility of nihonium (Nh, Z = 113). The European Physical Journal A. 2017, 53 (7): 158. ISSN 1434-6001. doi:10.1140/epja/i2017-12348-8 (英语). 
  32. ^ Beiser 2003,第432–433頁.
  33. ^ 33.0 33.1 33.2 Oganessian, Yu. Nuclei in the "Island of Stability" of Superheavy Elements. Journal of Physics: Conference Series. 2012, 337: 012005–1–012005–6. ISSN 1742-6596. doi:10.1088/1742-6596/337/1/012005可免费查阅. 
  34. ^ Moller, P.; Nix, J. R. Fission properties of the heaviest elements (PDF). Dai 2 Kai Hadoron Tataikei no Simulation Symposium, Tokai-mura, Ibaraki, Japan. University of North Texas. 1994 [2020-02-16]. (原始内容存档 (PDF)于2021-11-01). 
  35. ^ 35.0 35.1 Oganessian, Yu. Ts. Superheavy elements. Physics World. 2004, 17 (7): 25–29 [2020-02-16]. doi:10.1088/2058-7058/17/7/31. (原始内容存档于2021-11-28). 
  36. ^ Schädel, M. Chemistry of the superheavy elements. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2015, 373 (2037): 20140191. ISSN 1364-503X. PMID 25666065. doi:10.1098/rsta.2014.0191可免费查阅 (英语). 
  37. ^ Hulet, E. K. Biomodal spontaneous fission. 50th Anniversary of Nuclear Fission, Leningrad, USSR. 1989. Bibcode:1989nufi.rept...16H. 
  38. ^ Oganessian, Yu. Ts.; Rykaczewski, K. P. A beachhead on the island of stability. Physics Today. 2015, 68 (8): 32–38 [2021-11-28]. ISSN 0031-9228. OSTI 1337838. doi:10.1063/PT.3.2880. (原始内容存档于2021-11-28) (英语). 
  39. ^ Grant, A. Weighing the heaviest elements. Physics Today. 2018. doi:10.1063/PT.6.1.20181113a (英语). 
  40. ^ Howes, L. Exploring the superheavy elements at the end of the periodic table. Chemical & Engineering News. 2019 [2020-01-27]. (原始内容存档于2021-11-28) (英语). 
  41. ^ 41.0 41.1 Robinson, A. E. The Transfermium Wars: Scientific Brawling and Name-Calling during the Cold War. Distillations. 2019 [2020-02-22]. (原始内容存档于2021-11-28) (英语). 
  42. ^ Популярная библиотека химических элементов. Сиборгий (экавольфрам) [Popular library of chemical elements. Seaborgium (eka-tungsten)]. n-t.ru. [2020-01-07]. (原始内容存档于2011-08-23) (俄语).  Reprinted from Экавольфрам [Eka-tungsten]. Популярная библиотека химических элементов. Серебро — Нильсборий и далее [Popular library of chemical elements. Silver through nielsbohrium and beyond]. Nauka. 1977 (俄语). 
  43. ^ Nobelium - Element information, properties and uses | Periodic Table. Royal Society of Chemistry. [2020-03-01]. (原始内容存档于2021-03-08) (英语). 
  44. ^ 44.0 44.1 Kragh 2018,第38–39頁.
  45. ^ Kragh 2018,第40頁.
  46. ^ Ghiorso, A.; Seaborg, G. T.; Oganessian, Yu. Ts.; et al. Responses on the report 'Discovery of the Transfermium elements' followed by reply to the responses by Transfermium Working Group (PDF). Pure and Applied Chemistry. 1993, 65 (8): 1815–1824 [2016-09-07]. doi:10.1351/pac199365081815. (原始内容存档 (PDF)于2013-11-25) (英语). 
  47. ^ Commission on Nomenclature of Inorganic Chemistry. Names and symbols of transfermium elements (IUPAC Recommendations 1997) (PDF). Pure and Applied Chemistry. 1997, 69 (12): 2471–2474 [2021-11-28]. doi:10.1351/pac199769122471. (原始内容存档 (PDF)于2021-10-11) (英语). 
  48. ^ Barber, R. C.; Greenwood, N. N.; Hrynkiewicz, A. Z.; Jeannin, Y. P.; Lefort, M.; Sakai, M.; Ulehla, I.; Wapstra, A. P.; Wilkinson, D. H. Discovery of the transfermium elements. Part II: Introduction to discovery profiles. Part III: Discovery profiles of the transfermium elements (Note: for Part I see Pure Appl. Chem., Vol. 63, No. 6, pp. 879–886, 1991). Pure and Applied Chemistry. 1993, 65 (8): 1757. doi:10.1351/pac199365081757. 
  49. ^ 中国化学会无机化学名词小组修订. 无机化学命名原则 : 1980, 统一书号:13031·2078. 1982-12: 4-5 [2020-11-10]. (原始内容存档于2021-09-22). 
  50. ^ 刘路沙. 101—109号元素有了中文定名. 光明网. 光明日报. [2020-11-10]. (原始内容存档于2020-11-10). 
  51. ^ 贵州地勘局情报室摘于《中国地质矿产报》(1998年8月13日). 101~109号化学元素正式定名. 貴州地質. 1998, 15: 298–298 [2020-11-10]. (原始内容存档于2020-12-03). 
  52. ^ Names and symbols of transfermium elements (IUPAC Recommendations 1994). Pure and Applied Chemistry. 1994, 66 (12): 2419. doi:10.1351/pac199466122419. 
  53. ^ Names and symbols of transfermium elements (IUPAC Recommendations 1997). Pure and Applied Chemistry. 1997, 69 (12): 2471. doi:10.1351/pac199769122471. 
  54. ^ Karpov, A. V.; Zagrebaev, V. I.; Palenzuela, Y. M.; et al. Superheavy Nuclei: Decay and Stability. Exciting Interdisciplinary Physics. FIAS Interdisciplinary Science Series. 2013: 69. ISBN 978-3-319-00046-6. doi:10.1007/978-3-319-00047-3_6. 
  55. ^ Karpov, A. V.; Zagrebaev, V. I.; Palenzuela, Y. M.; Greiner, W. Greiner, W. , 编. Exciting Interdisciplinary Physics. FIAS Interdisciplinary Science Series. Springer International Publishing. 2013: 69–79. ISBN 978-3-319-00046-6. doi:10.1007/978-3-319-00047-3_6 (英语).  |article=被忽略 (帮助)

参考书目

外部連結