跳转到内容

代數閉域

本页使用了标题或全文手工转换
维基百科,自由的百科全书
(重定向自代數閉包

數學上,一個被稱作代數閉域若且唯若任何係數属于且次數大於零的單變數多項式裡至少有一個。代数闭域一定是无限域。

例子

舉例明之,實數域並非代數閉域,因為下列實係數多項式無實根:

同理可證有理數域非代數閉域。此外,有限域也不是代數閉域,因為若列出的所有元素,則下列多項式在中沒有根:

反之,複數域則是代數閉域;這是代數基本定理的內容。另一個代數閉域之例子是代數數域。

等價的刻劃

給定一個域,其代數封閉性與下列每一個性質等價:

不可约多项式若且唯若一次多项式

F是代数闭域,当且仅当环F[x]中的不可约多项式是而且只能是一次多项式。

“一次多项式是不可约的”的断言对于任何域都是正确的。如果F是代数闭域,p(x)是F[x]的一个不可约多项式,那么它有某个根a,因此p(x)是x − a的一个倍数。由于p(x)是不可约的,这意味着对于某个k ∈ F \ {0},有p(x) = k(x − a)。另一方面,如果F不是代数闭域,那么存在F[x]内的某个非常数多项式p(x)在F内没有根。设q(x)为p(x)的某个不可约因子。由于p(x)在F内没有根,因此q(x)在F内也没有根。所以,q(x)的次数大于一,因为每一个一次多项式在F内都有一个根。

每一个多项式都是一次多项式的乘积

F是代数闭域,当且仅当每一个系数位于次数F内的n ≥ 1的多项式p(x)都可以分解成线性因子。也就是说,存在域F的元素k, x1, x2, ……, xn,使得p(x) = k(x − x1)(x − x2) ··· (x − xn)。

如果F具有这个性质,那么显然F[x]内的每一个非常数多项式在F内都有根;也就是说,F是代数闭域。另一方面,如果F是代数闭域,那么根据前一个性质,以及对于任何域K,任何K[x]内的多项式都可以写成不可约多项式的乘积,推出这个性质对F成立。

Fn的每一个自同态都有特征向量

F是代数闭域,当且仅当对于每一个自然数n,任何从Fn到它本身的线性映射都有某个特征向量

Fn自同态具有特征向量,当且仅当它的特征多项式具有某个根。因此,如果F是代数闭域,每一个Fn的自同态都有特征向量。另一方面,如果每一个Fn的自同态都有特征向量,设p(x)为F[x]的一个元素。除以它的首项系数,我们便得到了另外一个多项式q(x),它有根当且仅当p(x)有根。但如果q(x) = xn + an − 1xn − 1+ ··· + a0,那么q(x)是以下友矩阵的特征多项式:

有理表达式的分解

F是代数闭域,当且仅当每一个系数位于F内的一元有理函数都可以写成一个多项式函数与若干个形为a/(x − b)n的有理函数之和,其中n是自然数,abF的元素。

如果F是代数闭域,那么由于F[x]内的不可约多项式都是一次的,根据部分分式分解的定理,以上的性质成立。

而另一方面,假设以上的性质对于域F成立。设p(x)为F[x]内的一个不可约元素。那么有理函数1/p可以写成多项式函数q与若干个形为a/(x − b)n的有理函数之和。因此,有理表达式

可以写成两个多项式的商,其中分母是一次多项式的乘积。由于p(x)是不可约的,它一定能整除这个乘积,因此它也一定是一个一次多项式。

代數閉包

為代數擴張,且是代數閉域,則稱的一個代數閉包。可以視之為包含的最小的代數閉域。

若我們承認佐恩引理(或其任一等價陳述),則任何域都有代數閉包。設為任兩個的代數閉包,則存在環同構使得;代數閉包在此意義上是唯一的,通常記作

文獻